Practical Human Biology

Lab 5 :Diffusion and osmosis

Diffusion:

is the movement of molecules from a higher to a lower concentration until equilibrium is achieved.

Osmosis :

is the diffusion of water into and out of cells through a differentially permeable membrane .

Isotonic Solutions :

The solute concentration is the same on both side of membrane therefore that is no gain or loss of water . (Tap water , normal saline 0.9% Na cl)

Hypotonic Solution :

Transfers to a solution with a lower percentage of solute (more water) than the cell. If a cell placed in a hypotonic solution water enter the cell; The not movement of water is from the outside to inside the cell. The solution cause cells to swell or burst (Turgor, Distilled water)

Hypertonic Solution :

Transfers to the solutions that lead cells to Shrink or Shriveling That's due to a loss of water it transfers to a solutions with a higher percentage of solute (less water) than these if the cell is placed in hypertonic solution water leaves the cell; the net movement of water is from the inside to the outside of cell. This solution cause cells to shrink (very saintly water).

Osmosis in animal cells and plant cells :

Figure 4:8 madder biology page

The arrows indicate the net movement of water in an isotonic solution, a cell neither gains nor loss water, in a hypotonic solution, a cell gains water and in a hypertonic solution, a cell loses water.

1- Water leaves the cell, if a cell is placed in a hypertonic solution .

2- water enters the cell, if a cell is placed in hypotonic solution.

3- in an isotonic solution, a cell neither gains nor loses water.

In a hypertonic solution, a cell loses water and the cytoplasm shrinks or shrivel plasmolysis.

The Cellular Transport :

The movement through cell membranes consists the following Processes :

2

قسم التحليلات المرضية

Practical Human Biology

إحياء بشري عملي

Processes	Characteristics	Energy source	Example
	Tendency of molecules to move	Molecular motion	-Respiratory Gases exchanged
Simple diffusion	from regions of high		in lungs
	concentration to regions of lower		-Water
	concentration		
	Diffusion of molecules through	Carrier energy	Glucose enters cell attached to
Facilitated	semipermeable membrane with	and molecular	carrier protein
diffusion	the aid of membrane carries	motion	
Osmosis	Passive movement of water	Molecular motion	Water moves through cell
	molecules through		membrane to maintain constant
	semipermeable membrane from		turgidity of cell
	regions of lower water		
	concentration		
	Movement of molecules from	Blood Pressure	Wastes are removed from
Filtration	regions of high pressure to		blood with kidneys
	regions of lower pressure as		
	result of hydrostatic pressure		
	Carrier - mediated transport of	Cellular energy	Glucose and amino-acids move
Active Transport	solutes from regions of their low	(ATP)	through membranes
	concentration to regions of their		
	higher concentration (against		
	their concentration gradient)		
Endocytosis	Process in which membrane	Cellular energy	White blood cell membrane
phagocytosis	engulfs solid particles from		engulfs bacterial cell
	extracellular environmental		
Endocytosis	Process in which membrane	Cellular energy	Membrane forms vacuoles
pinocytosis	engulfs minute		containing solute and solvent
	Release of molecules from cell	Cellular energy	Hormones and mucus are
Exocytosis	as vesicles rupture		secreted out cell
			neurotransmitters are released
			at synapse

1^{rst} Class