Lecter 7

Application of the integral

Area between two curve

If f and g are continuous on the interval $[a . b]$. and if $f(x) \geq g(x)$ for all x in $[a . b]$, then the area of the region bounded above by $y=f(x)$, below $y=g(x)$

On the left by the line $x=a$ and on the right by the line $x=b$ is

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Example: find the area of the region bounded above by $y=x+6$, bounded below by $y=x^{2}$ and bounded on the sides by the lines $x=0$ and $x=2$

Sol.
$A=\int_{a}^{b}[f(x)-g(x)] d x$
$A=\int_{0}^{2}\left[(x+6)-\left(x^{2}\right)\right] d x$
$=\left|\frac{x^{2}}{2}+6 x-\frac{x^{3}}{3}\right| \begin{aligned} & 2 \\ & 0\end{aligned}$
$=\frac{2^{2}}{2}+6(2)-\frac{2^{3}}{3}-0$
$=\frac{34}{3}$ unit 2

Determine the area of the region bounded by $y=2 x^{2}+10$ and $y=4 x+16$

solution

$$
\begin{aligned}
A & =\int_{a}^{b}\binom{\text { upper }}{\text { function }}-\binom{\text { lower }}{\text { function }} d x \\
& =\int_{-1}^{3} 4 x+16-\left(2 x^{2}+10\right) d x \\
& =\int_{-1}^{3}-2 x^{2}+4 x+6 d x \\
& =\left.\left(-\frac{2}{3} x^{3}+2 x^{2}+6 x\right)\right|_{-1} ^{3} \\
& =\frac{64}{3}
\end{aligned}
$$

Determine the area of the region bounded by $y=x \mathrm{e}^{-x^{2}}, y=x+1, x=2$, and the y-axis.

solution

$$
\begin{aligned}
A & =\int_{a}^{b}\binom{\text { upper }}{\text { function }}-\binom{\text { lower }}{\text { function }} d x \\
& =\int_{0}^{2} x+1-x \mathbf{e}^{-x^{2}} d x \\
& =\left.\left(\frac{1}{2} x^{2}+x+\frac{1}{2} \mathbf{e}^{-x^{2}}\right)\right|_{0} ^{2} \\
& =\frac{7}{2}+\frac{\mathbf{e}^{-4}}{2}=3.5092
\end{aligned}
$$

