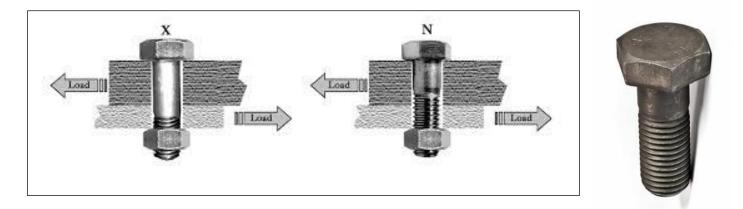


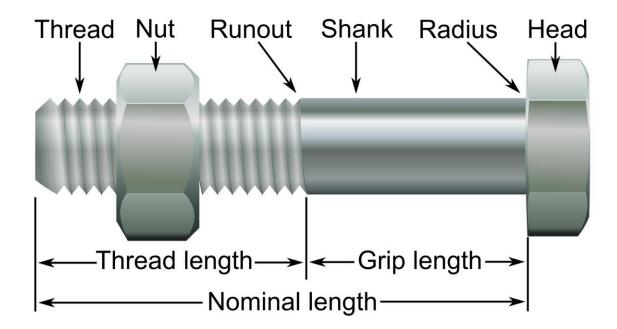
CHAPTER SIX: CONNECTION

6.1: Introduction

Connections of structural steel members are of critical importance. An inadequate connection, which can be the "weak link" in a structure, has been the cause of numerous failures. Failure of structural members is rare; most structural failures are the result of **poorly designed or detailed connections.**

Modern steel structures are connected by welding or bolting (either high-strength or "common" bolts) or by a combination of both.




Chapter Six:CONNECTION

High strength bolts

Group	A	A325	bolt
-------	---	------	------

- Group B A490 bolt
- Threaded are excluded from shear plane A325-X
- Threaded are not excluded from shear plane A325-N
- Threaded are excluded from shear plane A490-X
- A490-N Threaded are not excluded from shear plane

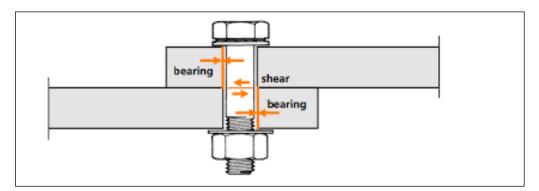
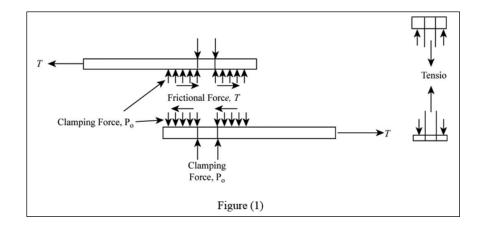
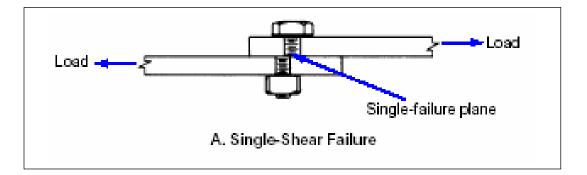


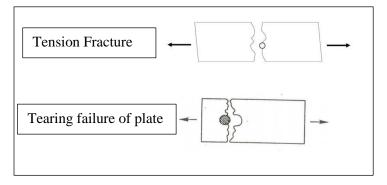
Table 7–2
Available Tensile
Strength of Bolts, kips


	Nominal B	olt Diam	eter a	_b , in.	5	/8	3	/4	7	8	1	I
	Nomina	al Bolt Ar	ea, in	.2	0.3	807	0.4	42	0.6	101	0.7	'85
	ASTM Desi		$F_{nt}/\Omega = \phi F_{nt}$ (ksi) (ksi)		r _n /Ω	ф г , .	r _n/Ω	ф г _	r _n /Ω	ф г ,	r _n/Ω	ф г _
		A	SD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	A325 & F18		5.0	67.5	13.8	20.7	19.9	29.8	27.1	40.6	35.3	53.0
Group B	A490 A307		6.5 2.5	84.8 33.8	17.3 6.90	26.0 10.4	25.0 9.94	37.4 14.9	34.0 13.5	51.0 20.3	44.4 17.7	66.6 26.5
	Nominal B	l _b , in.	11	/8	1	1/4	13	/8	1 ¹ /2			
	Nomina	.2	0.9	94	1.	23	1.4	48	1.77			
	ASTM Desi	i i i	_t /Ω (si)	¢ <i>F_{nt}</i> (ksi)	r _n /Ω	ф r _n	r_n/ Ω	¢r _n	r _n /Ω	ф г ,	r _/Ω	ф г _
		A	SD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
Group A	A325 & F18	1	5.0	67.5	44.7	67.1	55.2	82.8	66.8	100	79.5	119
Group B	A490 A307		6.5 2.5	84.8 33.8	56.2 22.4	84.2 33.5	69.3 27.6	104 41.4	83.9 33.4	126 50.1	99.8 39.8	150 59.6
	ASD	LRF	D									
	$\Omega_v = 2.00$	$\phi_v = 0$.75									

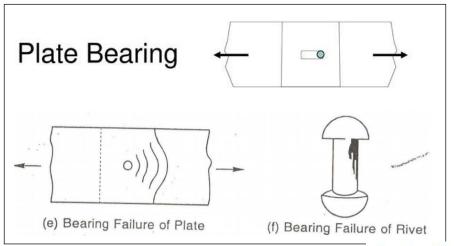
Type of connections

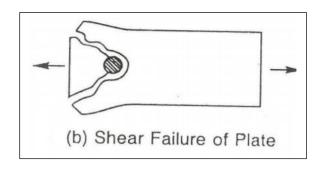
Bearing type connections – slip is permitted under service loads.


Slip- critical connections (Formally known as friction type connections) slip is not permitted under service loads

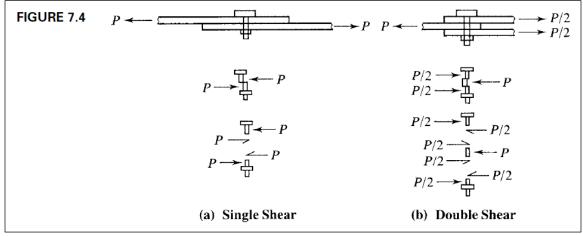

Failure modes

We need to examine the various modes of failure that are possible in connections with fasteners:


1- Bolt shear failure


2- Tension fracture of plate

3- Bearing failure of plate (crushing failure)



4- Shear failure of plate

7.2 BOLTED SHEAR CONNECTIONS: FAILURE MODES

Consider the lap joint shown in Figure 7.4a. Failure of the fastener can be assumed to occur as shown.

Tables 7–1. Available Shear Strength of Bolts

The available bolt shear strengths of various grades and sizes of bolts are summarized in Table 7–1.

		S	-	Avai ngt		le S	shea		os			
No	ominal Bolt	Diamete	r <i>d_b,</i> in.		5	/8	3	/4	7	/8	-	I .
	Nominal B	olt Area,	i n. 2		0.3	07	0.4	142	0.6	601	0.7	'85
ASTM	Thread	<i>F_{nv}/</i> Ω (ksi)	¢ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω _v	ф , г ,	r _n /Ω _v	ф , г ,	r _n /Ω _v	ф, г ,	r _n /Ω _v	ф , г ,
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD
A325	N	24.0	36.0	S D	7.36 14.7	11.0 22.1	10.6 21.2	15.9 31.8	14.4 28.9	21.6 43.3	18.8 37.7	28.3 56.5
F1852	x	30.0	45.0	S D	9.20 18.4	13.8 27.6	13.3 26.5	19.9 39.8	18.0 36.1	27.1 54.1	23.6 47.1	35.3 70.7
4400	N	30.0	45.0	S D	9.20 18.4	13.8 27.6	13.3 26.5	19.9 39.8	18.0 36.1	27.1 54.1	23.6 47.1	35.3 70.7
A490	х	37.5	56.3	S D	11.5 23.0	17.3 34.5	16.6 33.1	24.9 49.7	22.5 45.1	33.8 67.6	29.5 58.9	44.2 88.4
A307	_	12.0	18.0	S D	3.68 7.36	5.52 11.0	5.30 10.6	7.95 15.9	7.22	10.8 21.6	9.42 18.8	14.1 28.3

Example

shear strength /bolt = $F_{nv} \times A_b$ $\frac{3}{4}$ " ϕ bolt A325 - N From table J3-2 and table 7-1 shear strength /bolt = $F_{nv}xA_b$ = 48x0.442=21.261, ϕr = 0.75 × 21.216 = 15.9 kips

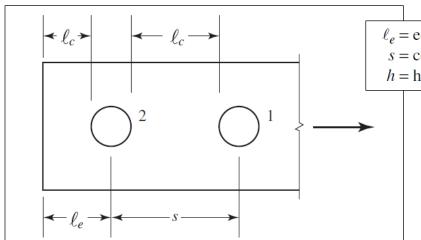
	Nominal Stress o	TABLE J3.2 Nominal Stress of Fasteners and Threaded Parts, ksi (MPa)										
	Description of Fasteners	Nominal Tensile Stress, <i>F_{nt}, ksi (MPa)</i>	Nominal Shear Stress in Bearing-Type Connections, <i>F_{nv}</i> , ksi (MPa)									
	A307 bolts	45 (310) ^{[a][b]}	24 (<u>165)</u> ^{[b] [c] [f]}									
roup A	A325 or A325M bolts, when threads are not excluded from shear planes	90 (620) ^[e]	48 (330) ^[f]									
roup A	A325 or A325M bolts, when threads are excluded from shear planes	90 (620) ^[e]	60 (414) ^[f]									
roup B	A490 or A490M bolts, when threads are not excluded from shear planes	113 (780) ^[e]	60 (414) ^[f]									
oup B	A490 or A490M bolts, when threads are excluded from shear planes	113 (780) ^[e]	75 (520) ^[f]									
	Threaded parts meeting the requirements of Section A3.4, when threads are not excluded from shear planes	0.75 F _u ^{[a][d]}	0.40 <i>F</i> _u									
	Threaded parts meeting the requirements of Section A3.4, when threads are excluded from shear planes	0.75 F _u ^{[a][d]}	0.50 <i>F</i> _u									

No	minal Bolt	Diamete	r <i>d_b,</i> in.		5	⁵ /8 ³ /4		7/8		1 .		
Nominal Bolt Area, in. ²					0.3	0.307 0.442		0.601		0.785		
ASTM Thread		<i>F_{nv}/</i> Ω (ksi)	φ <i>F_{nv}</i> (ksi)	Load-	r _n /Ω _v	ф _vr_n	r _n /Ω _v	ф _vr_n	r _n /Ω _v	ф , r ,	r _n /Ω _v	¢ _v r _n
Desig.	Cond.	ASD	LRFD	ing	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	D LRFD
	N	24.0	20.0	S	7.36	11.0	10.6	15.9	14.4	21.6	18.8	28.3
A325 F1852	11	24.0	36.0	D	14.7	22.1	21.2	31.8	28.9	43.3	37.7	56.5
	v	20.0	45.0	S	9.20	13.8	13.3	19.9	18.0	27.1	23.6	35.3
	· ·	30.0	45.0	l n	18/	276	26.5	20.0	26.1	5/1	171	707

Table 7-2 Tensile Strength

Design tensile strength /bolt = $\phi R_n = \phi Fnt \ x \ Ab$

 $\frac{3}{4}''\phi \ bolt \ A325 - N$


From table J3-2 and table 7-2 shear strength /bolt = $F_{nt}xA_b$ = 90x0.442=39.78, $\phi r = 0.75 \times 39.78 = 29.8 \ kips$

Nominal Bolt Diameter d _b , in.			5,	/8	3	/4	7/	8	1		
Nominal Bo	lt Area, in	0.3	807	0.4	442	0.6	01	0.785			
ASTM Desig.	ig. <i>F_{nt}/Ω</i> (ksi)		r _n /Ω	ф г , .	r _n/Ω	ф г ,	r _n /Ω	ф г ,	$r_n/\Omega = \phi r_n$		
	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	ASD	LRFD	
A325 & F1852	45.0	67.5	13.8	20.7	19.9	29.8	27.1	40.6	35.3	53.0	
A490	56.5	84.8	17.3	26.0	25.0	37.4	34.0	51.0	44.4	66.6	
A307	22.5	33.8	6.90	10.4	9.94	14.9	13.5	20.3	17.7	26.5	

7.3 BEARING STRENGTH, SPACING, AND EDGE-DISTANCE REQUIREMENTS

Bearing strength is independent of the type of fastener because the stress under consideration is on the part being connected rather than on the fastener.

For this reason, bearing strength, as well as spacing and edge-distance requirements, which also are independent of the type of fastener, will be considered before bolt shear and tensile strength.

 ℓ_e = edge-distance to center of the hole s = center-to-center spacing of holes h = hole diameter

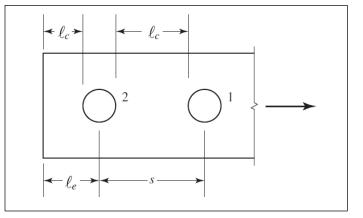
Bolts located closest to the edges

$$L_c = L_e - \frac{1}{2} d_{hole}$$
$$d_{hole} = d_{bolt} + \frac{1}{16}$$

 $R_n = nominal \ strenght \ for \ bearing = 1.2 \ L_c t \ F_u \le 2.4 \ F_u d_t$

t= thickness of the connected part

 F_u = min tensile strength of the connected part


d=bolt diameter

$$\phi R_n = design strenght$$

 $\phi = 0.75$

Other Bolts

$$L_c = S - d_{hole}$$
$$d_{hole} = d_{bolt} + \frac{1}{16}$$

 $R_n = nominal \ strenght \ for \ bearing = 1.2 \ L_c t \ F_u \leq 2.4 \ F_u d_t$

Summary of Bearing Strength, Spacing, and **Edge-Distance Requirements (Standard Holes)**

a. Bearing strength:

 $R_n = 1.2\ell_c t F_u \le 2.4 dt F_u$

(AISC Equation J3-6a)

b. Minimum spacing and edge distance: In any direction, both in the line of force and transverse to the line of force,

 $s \ge 2^{2/3}d$ (preferably 3d) $\ell_e \ge$ value from AISC Table J3.4