The Definite Integrals and Its Application

A Definite Integral has start and end values: in other words, there is an interval [a, b].
a and b (called limits, bounds or boundaries) are put at the bottom and top of the "S", like this:

Definite Integral (from \mathbf{a} to \mathbf{b})

Indefinite Integral
(no specific values)

Properties

$$
\begin{aligned}
& \int_{a}^{b} f(\mathrm{x})+\mathrm{g}(\mathrm{x}) \mathrm{dx}=\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}+\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{~g}(\mathrm{x}) \mathrm{dx} \\
& \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \\
& \int_{a}^{a} f(x) d x=0 \\
& \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
\end{aligned}
$$

Example (1): Evaluate the integral $\int_{-3}^{2}\left(6-x-x^{2}\right) \mathrm{dx}$
Solution: $\int_{-3}^{2}\left(6-x-x^{2}\right) \mathrm{dx}=\left[6 x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{-3}^{2}$

$$
\begin{aligned}
& =\left[6(2)-\frac{(2)^{2}}{2}-\frac{(2)^{3}}{3}\right]-\left[6(-3)-\frac{(-3)^{2}}{2}-\frac{(-3)^{3}}{3}\right] \\
& =\left[12-2-\frac{8}{3}\right]-\left[-18-\frac{9}{2}+9\right]=\left[10-\frac{8}{3}\right]-\left[-9-\frac{9}{2}\right] \\
& =19-\frac{8}{3}+\frac{9}{2}=19+\frac{-16+27}{6}=19+\frac{11}{6}=\frac{125}{6}
\end{aligned}
$$

Example (2): Evaluate the integral $\int_{0}^{\pi} \sin x d x$
Solution: $\int_{0}^{\pi} \sin x d x=-\left.\cos x\right|_{0} ^{\pi}=-(\cos \pi-\cos o)$

$$
=-(-1-1)=-(-2)=2
$$

Example (3): Evaluate the integral $\int_{0}^{\frac{\pi}{6}} \frac{\sin 2 x}{\cos ^{2} x} d x$
Solution: $\int_{0}^{\frac{\pi}{6}} \frac{\sin 2 x}{\cos ^{2} 2 x} d x=\int_{0}^{\frac{\pi}{6}}(\cos 2 x)^{-2} \sin 2 x d x$

$$
\begin{aligned}
& =\left(\frac{1}{-2}\right) \int_{0}^{\frac{\pi}{6}}(\cos 2 x)^{-2}(-2) \sin 2 x d x \\
& =\frac{-1}{2}\left(\frac{(\cos 2 x)^{-1}}{-1}\right)_{0}^{\frac{\pi}{6}}=\frac{1}{2}\left(\frac{1}{\cos 2 x}\right)_{0}^{\frac{\pi}{6}} \\
& =\frac{1}{2}\left[\frac{1}{\cos \left(2 \frac{\pi}{6}\right)}-\frac{1}{\cos (2(0))}\right]=\frac{1}{2}\left[\frac{1}{\cos \left(\frac{\pi}{3}\right)}-\frac{1}{\cos (0)}\right]=\frac{1}{2}\left[\frac{1}{\frac{1}{2}}-\frac{1}{1}\right] \\
& =\frac{1}{2}[2-1]=\frac{1}{2}
\end{aligned}
$$

Area Under a Curve

The area under a curve between two points can be found by doing a definite integral between the two points. To find the area under the curve $y=f(x)$ between $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=\mathrm{b}$, integrate $\mathrm{y}=\mathrm{f}(\mathrm{x})$ between the limits of a and b .

Remark: If the area is above x -axis, then the area is positive, and if the area under the x -axis, the area is negative, so we should change the sign to positive value by adding a negative sign or by taking the absolute value.

Remark: To avoid the negative value, we will take the absolute value:

$$
\text { Area }=\left|\int_{x=a}^{x=b} f(x) d x\right|
$$

Example: Find the area bounded by $y=x^{2}$ and $x=1$ and $x=3$
Solution:

$$
\begin{aligned}
\text { Area } & =\left|\int_{x=1}^{x=3} x^{2} d x\right| \\
& \left.=\left\lvert\, \frac{x^{3}}{3}\right.\right]_{x=1}^{x=3} \mid \\
& =\left|\frac{3^{3}}{3}-\frac{1^{3}}{3}\right| \\
& =\left|9-\frac{1}{3}\right|=8 \frac{2}{3} \text { unit }^{2}
\end{aligned}
$$

Example: Find the total area between the curve $y=x^{3}$ and $x=-2$ and $x=2$
Solution:

If we simply integrated $y=x^{3}$ between $x=-2$ and $x=2$, we would get:

$$
\text { Area } \left.=\left|\int_{x=-2}^{x=2} x^{3} d x\right|=\left\lvert\, \frac{x^{4}}{4}\right.\right]_{x=-2}^{x=2}\left|=\left|\frac{16}{4}-\frac{16}{4}\right|=0\right.
$$

So, instead we have to split the graph up and do two separate integrals:

$$
\begin{aligned}
& \left.A 1=\left|\int_{x=0}^{x=2} x^{3} d x\right|=\left\lvert\, \frac{x^{4}}{4}\right.\right]_{0}^{2}\left|=\left|\frac{16}{4}-0\right|=4\right. \\
& \left.A 2=\left|\int_{x=-2}^{x=0} x^{3} d x\right|=\left\lvert\, \frac{x^{4}}{4}\right.\right]_{-2}^{0}\left|=\left|0-\frac{16}{4}\right|=|-4|=4\right.
\end{aligned}
$$

Hence, Area $=A 1+A 2=4+4=8$ unit 2

Example: Find the area bounded by the line $\mathrm{x}+\mathrm{y}=1$ and the coordinate axes
Solution:

$$
\begin{aligned}
& \because x+y=2 \Longrightarrow y=2-x \\
& \begin{aligned}
y=0 & \longrightarrow x=2 \Longrightarrow(2,0)
\end{aligned} \\
& \begin{aligned}
\text { Area } & =\left|\int_{x=0}^{x=2}(2-x) d x\right| \\
& \left.=\left\lvert\,\left(x-\frac{x^{2}}{2}\right)\right.\right]_{x=0}^{x=2} \mid \\
& =\left|(0-0)-\left(2-\frac{2^{2}}{2}\right)\right| \\
& =|-2+2|=4 \text { unit }^{2}
\end{aligned}
\end{aligned}
$$

