Mathematical
MSC. Sarai Hamza

First stage/ Lecter 2

## Inverse Trigonometric Functions

The inverse trigonometric functions are defined to be the inverses of particular parts of the trigonometric functions; parts that do have inverses.
The inverse sine function, denoted by $\sin ^{-1} x($ or $\arcsin x)$, is defined to be the inverse of the restricted sine function. A similar idea holds for all the other inverse trigonometric functions. It is important here to note that in this case the 1 " is not an exponent and so, $\sin ^{-1} x \neq \frac{1}{\sin x}$

In inverse trigonometric functions the 1 " looks like an exponent but it isn't, it is simply a notation that we use to denote the fact that we're dealing with an inverse trigonometric function. It is a notation that we use in this case to denote inverse trigonometric functions. If we had really wanted exponentiation to denote 1 over sine we would use the following. $(\sin x)^{-1}=\frac{1}{\sin x}$

Domain: $-1 \leq x \leq 1$
Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$


Domain: $x \leq-1$ or $x \geq 1$
Range: $0 \leq y \leq \pi, y \neq \frac{\pi}{2}$


Domain: $-1 \leq x \leq 1$
Range: $0 \leq y \leq \pi$


Domain: $x \leq-1$ or $x \geq 1$
Range: $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}, y \neq 0$


Domain: $-\infty<x<\infty$
Range: $-\frac{\pi}{2}<y<\frac{\pi}{2}$


Domain: $-\infty<x<\infty$
Range: $\quad 0<y<\pi$


First stage/ Lecter 2

## Derivatives of inverse trigonometric functions

Let $u$ be a function $x$, the derivatives of inverse trigonometric functions are:

1. $\frac{d}{d x}\left(\sin ^{-1} u\right)=\frac{1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$
2. $\frac{d}{d x}\left(\cos ^{-1} u\right)=\frac{-1}{\sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$
3. $\frac{d}{d x}\left(\tan ^{-1} u\right)=\frac{1}{1+u^{2}} \cdot \frac{d u}{d x}$
4. $\frac{d}{d x}\left(\cot ^{-1} u\right)=\frac{-1}{1+u^{2}} \cdot \frac{d u}{d x}$
5. $\frac{d}{d x}\left(\sec ^{-1} u\right)=\frac{1}{|u| \sqrt{u^{2}-1}} \cdot \frac{d u}{d x}$
6. $\frac{d}{d x}\left(\csc ^{-1} u\right)=\frac{-1}{|u| \sqrt{u^{2}-1}} \cdot \frac{d u}{d x}$

Example : Find the derivative for

1. $y=\sin ^{-1} 2 x \Rightarrow \frac{d y}{d x}=\frac{1}{\sqrt{1-(2 x)^{2}}} \times 2=\frac{2}{\sqrt{1-4 x^{2}}}$
2. $y=3 x \cos ^{-1} 3 x-\sqrt{1-9 x^{2}}$

$$
\begin{aligned}
\frac{d y}{d x} & =3 x \times \frac{-1}{\sqrt{1-(3 x)^{2}}} \times 3+3 \cos ^{-1} 3 x-\frac{-18 x}{2 \sqrt{1-9 x^{2}}} \\
& =\frac{-9 x}{\sqrt{1-9 x^{2}}}+3 \cos ^{-1} 3 x+\frac{9 x}{\sqrt{1-9 x^{2}}}=3 \cos ^{-1} 3 x
\end{aligned}
$$

Integrals of Inverse Trigonometric Functions
We can derive all the integration forms from our derivatives forms as follows
(1) $\frac{d}{d u} \sin ^{-1}(u)=\frac{1}{\sqrt{1-u^{2}}} \xrightarrow{\int \frac{1}{\sqrt{1-u^{2}}} d u=\sin ^{-1}(u)+C}$
(2) $\frac{d}{d u} \cos ^{-1}(u)=-\frac{1}{\sqrt{1-u^{2}}} \xrightarrow{\int} \int \frac{1}{\sqrt{1-u^{2}}} d u=-\cos ^{-1}(u)+C$
(3) $\frac{d}{d u} \tan ^{-1}(u)=\frac{1}{1+u^{2}} \xrightarrow{\int} \int \frac{1}{1+u^{2}} d u=\tan ^{-1}(u)+C$
(4) $\frac{d}{d u} \cot ^{-1}(u)=-\frac{1}{1+u^{2}} \xrightarrow{\int} \int \frac{1}{1+u^{2}} d u=-\cot ^{-1}(u)+C$
(5) $\frac{d}{d u} \sec ^{-1}(u)=\frac{1}{|u| \sqrt{u^{2}-1}} \xrightarrow{\int} \int \frac{1}{|u| \sqrt{u^{2}-1}} d u=\sec ^{-1}(u)+C$
(6) $\frac{d}{d u} \csc ^{-1}(u)=-\frac{1}{|u| \sqrt{u^{2}-1}} \xrightarrow{\int} \int \frac{1}{|u| \sqrt{u^{2}-1}} d u=-\csc ^{-1}(u)+C$

## MSC. Sarai Hamza

First stage/ Lecter 2
Examples: Evaluate the following integrals:

1) $\int \frac{d x}{\sqrt{1-4 x^{2}}}$

$$
\begin{aligned}
& =\frac{1}{2} \int \frac{2 d x}{\sqrt{1-(2 x)^{2}}} \\
& =\frac{1}{2} \sin ^{-1}(2 x)+C \text { or } \frac{1}{2} \cos ^{-1}(2 x)+C
\end{aligned}
$$

2) $\int \frac{d t}{1+t^{2}}$

$$
=\tan ^{-1}(t)+C \text { or }-\cot ^{-1}(t)+C
$$

3) $\frac{d x}{x \sqrt{4 x^{2}-1}}$

$$
\begin{aligned}
& =\frac{2 d x}{2 x \sqrt{(2 x)^{2}-1}} \\
& =\sec ^{-1}|2 x|+C \text { or }-\csc ^{-1}|2 x|+C
\end{aligned}
$$

4) $\frac{-d x}{\sqrt{4-25 x^{2}}}$
$=\frac{-d x}{\sqrt{4\left(1-\frac{25}{4} x^{2}\right)}}$
$=\frac{-d x}{2 \sqrt{1-\left(\frac{5}{2} x\right)^{2}}}$
$=\frac{-1}{2} \cdot \frac{2}{5} \cdot \frac{\frac{5}{2} d x}{\sqrt{1-\left(\frac{5}{2} x\right)^{2}}}$
$=-\frac{1}{5} \sin ^{-1}\left(\frac{5}{2} x\right)+C$ or $\frac{1}{5} \cos ^{-1}\left(\frac{5}{2} x\right)+C$
5) $\int \frac{\cos (x) d x}{\sqrt{1-\sin ^{2}(x)}}$

$$
=\sin ^{-1}(\sin (x))+C
$$

$$
=x+C
$$

First stage/ Lecter 2

## Logarithm function

The logarithm function with base $b$ is the function $y=\log x$ where $b>0$ and $b \neq 1$. The function is defined for all $x>0$.
Here is its graph for any base $b$


Note the following:

1. For any base, the $x$-intercept is $1 . \Rightarrow \log _{\mathrm{b}} 1=0$.
2. The graph passes through the point $(b, 1) . \Rightarrow \log _{b} b=1$.
3. The graph is below the $x$-axis -- the logarithm is negative -- for $0<x<1$
4. The function is defined only for positive values of $x$.
5. The range of the function is all real numbers.
6. The negative $y$-axis is a vertical asymptote.
7. $\log _{b}(x y)=\log _{b} x+\log _{b} y$.
8. $\log _{b}\left(\frac{x}{y}\right)=\log _{b} x-\log _{b} y$.
9. $\log _{b}\left(\frac{1}{x}\right)=-\log _{b} x$.
10. $\log _{b} x^{y}=y \log _{b} x$.

First stage/ Lecter 2

## The natural logarithm $y=\ln x$

The system of natural logarithms has the number called $e$ as its base. $e$ is an irrational number; its decimal value is approximately 2.71828182845904.
To indicate the natural logarithm of a number we write " $\ln$." $\ln x$ means $\log x$. So we have

1. $\ln e=1$
2. $\log _{b} x=\frac{\ln x}{\ln b}$
3. $\ln (x y)=\ln x+\ln y$
4. $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$
5. $\ln x^{n}=n \ln x$

## Derivative of natural logarithm function

If $u$ is a function $x$, then

$$
\frac{d}{d x}(\ln u)=\frac{1}{u} \cdot \frac{d u}{d x}
$$

## Example 1: Find derivatives of the functions

1. $y=\ln (5 x+1)$

$$
\frac{d y}{d x}=\frac{1}{5 x+1} \times 5=\frac{5}{5 x+1}
$$

2. $y=2 x \tan ^{-1} x-\ln \left(x^{2}+1\right)$

$$
\frac{d y}{d x}=\frac{2 x}{1+x^{2}}+2 \tan ^{-1} x-\frac{2 x}{x^{2}+1}=2 \tan ^{-1} x
$$

3. $y=\ln (\sin 3 x)$

$$
\frac{d y}{d x}=\frac{1}{\sin 3 x} \times 3 \cos 3 x=3 \cot 3 x
$$

First stage/ Lecter 2

## Integrals of Logarithmic Functions

$$
\because \frac{d}{d u} \ln (u)=\frac{1}{u} d u \xrightarrow{\int \frac{1}{u} d u=\ln |u|+C}, u \neq 0
$$

Examples: Evaluate the following integrals:

$$
\text { 1) } \begin{aligned}
& \int \frac{2}{x} d x \\
& =2 \int \frac{1}{x} d x \\
& =2 \ln |x|+C
\end{aligned}
$$

3) $\int \frac{x}{\left(2 x^{2}+3\right)} d x$

$$
\begin{aligned}
& =\frac{1}{4} \int \frac{4 x}{\left(2 x^{2}+3\right)} d x \\
& =\frac{1}{4} \ln \left|2 x^{2}+3\right|+C
\end{aligned}
$$

2) $\int\left(\frac{3}{x^{2}}+\frac{5}{x}\right) d x$

$$
\begin{aligned}
& =3 \int x^{-2} d x+5 \int \frac{1}{x} d x \\
& =3 \frac{x^{-1}}{-1}+5 \ln |x|+C \\
& =\frac{-3}{x}+5 \ln |x|+C
\end{aligned}
$$

4) $\int \frac{\sec ^{2}(x)}{\tan (x)} d x$
$=\ln |\tan (x)|+C$

## Exponential functions

For any positive number $a>0, a \neq 1$, there is a function called an exponential function that is defined as $f(x)=a$

For example

$$
y=2^{x}, . y=\left(\frac{1}{2}\right)^{x}
$$

## Basic rules for exponents

1. The product rule $a^{x} \cdot a^{y}=a^{x+y}$

2. The quotient rule $\frac{a^{x}}{a^{y}}=a^{x-y}$
3. The rule for power of a power $\left(a^{x}\right)^{y}=a^{x . y}$

## Natural exponential function

The function $f(x)=e^{x}$ is often called exponential function or natural exponential function which is an important function. The exponential function $f(x)=e^{x}$ is the inverse of the logarithm function $f(x)=\ln x$.

## Derivatives of exponential function

If $u$ is a function $x$, then

$$
\frac{d}{d x}\left(e^{u}\right)=e^{u} \cdot \frac{d u}{d x}
$$

Example : Find $y^{\prime}$ and $y^{\prime \prime}$ of the function

1. $y=e^{3 x-2}$

$$
\begin{aligned}
& y^{\prime}=e^{3 x-2} \times 3=3 e^{3 x-2} \\
& y^{\prime \prime}=3 e^{3 x-2} \times 3=9 e^{3 x-2}
\end{aligned}
$$

## Integrals of Exponential Function

$$
\because \frac{d}{d u} e^{(u)}=e^{(u)} d u \stackrel{\int}{\longrightarrow} \int e^{(u)} d u=e^{(u)}+C
$$

Examples: Evaluate the following integrals:

1) $\int e^{2 x} d x$
$=\frac{1}{2} \int 2 e^{2 x} d x$
2) $\int \frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} d x$

$$
=\ln \left|e^{x}+e^{-x}\right|+C
$$

$$
=\frac{1}{2} e^{2 x}+C
$$

4) $\int e^{2 x} \sin \left(e^{2 x}\right) d x$
5) $\int e^{\sin (3 x)} \cdot \cos (3 x) d x$
$=\frac{1}{3} \int 3 \cdot e^{\sin (3 x)} \cdot \cos (3 x) d x$
$=\frac{1}{3} e^{\sin (3 x)}+C$

$$
\begin{aligned}
& =\frac{1}{2} \int 2 \cdot e^{2 x} \sin \left(e^{2 x}\right) d x \\
& =-\cos \left(e^{2 x}\right)+C
\end{aligned}
$$

