Techniques of Integration

I- Integration by parts

Sometimes we can recognize the differential to be integrated as a product of a function which is easily differentiated and a differential which is easily integrated. For example, if the problem is to find

$$
\int x^{n} \cos x d x
$$

We have two ways to do this:

1- Tabular integration by parts

Which is used for

1) the products of polynomials and sine function, $x \sin b x$.
2) the products of polynomials and cosine function, $x \cos b x$.
3) the products of polynomials and exponential function, $x e^{a x}$.

In any of these three cases we choose the polynomial as u and the product of sine function and $d x$ (cosine or exponential function and dx respectively) as $d v$.

Example 1: Evaluate
$1-\int x^{3} \cos x d x$

$1 . \int x^{3} \cos x d x$	Derivatives of u	Integrals of v
	x^{3}	$\cos x$
	$6 x$	$\sin x$
	6	$\cos x$
	0	$\cos x$

$$
\int x^{3} \cos x d x=x^{3} \sin x+3 x^{2} \cos x-6 x \sin x-6 \cos x+c
$$

Mathematical

MSC. Sarai Hamza

2- $\int x^{2} e^{2 x} d x$

D. of x^{2}	I. of $\mathrm{e}^{2 x}$
x^{2}	$\mathrm{e}^{2 x}$
$2 x$	$\frac{1}{2} \mathrm{e}^{2 x}$
2	$\frac{1}{4} \mathrm{e}^{2 x}$
0	$\frac{1}{8} \mathrm{e}^{2 x}$

$$
\int x^{2} \mathrm{e}^{2 x} d x=\frac{x^{2}}{2} \mathrm{e}^{2 x}-\frac{2 x}{4} \mathrm{e}^{2 x}+\frac{2}{8} \mathrm{e}^{2 x}+c=\frac{\mathrm{e}^{2 x}}{2}\left(x^{2}-x+\frac{1}{2}\right)+c
$$

2-Integration by using the formula

$$
\int u d v=u v-\int v d u
$$

Which is used for inverse trigonometric functions and logarithm functions.

Example2: Evaluate

1. $\int \ln x d x$

$$
\begin{aligned}
& u=\ln x \quad \text { and } \quad d v=d x \\
& d u=\frac{d x}{x} \quad \text { and } \quad v=x \\
& \int u d v=u v-\int v d u \\
& \begin{aligned}
\int \ln x d x & =x \ln x-\int x \times \frac{d x}{x} \\
& =x \ln x-\int d x=x \ln x-x+c
\end{aligned}
\end{aligned}
$$

Mathematical
MSC. Sarai Hamza
2. $\int \sin ^{-1} 2 x d x$

$$
u=\sin ^{-1} 2 x \quad \text { and } \quad d v=d x
$$

$$
d u=\frac{2 d x}{\sqrt{1-4 x^{2}}} \quad \text { and } \quad v=x
$$

$$
\int u d v=u v-\int v d u
$$

$$
\int \sin ^{-1} 2 x d x=x \sin ^{-1} 2 x-\int \frac{2 x d x}{\sqrt{1-4 x^{2}}}
$$

$$
=x \sin ^{-1} 2 x+\frac{1}{2} \sqrt{1-4 x^{2}}+c
$$

$$
\int \sin ^{n} x \cos ^{m} x
$$

If m odd

If n odd

$$
\sin ^{2} x=1-\cos ^{2} x
$$

2- Power of Trigonometric Functions
A. To Find the integral for:

$$
\int \sin ^{n}(x) \cos ^{m}(x)
$$

case (1): If one of the powers is odd (or both are odd), then we use the following form;

$$
\sin ^{2}(x)+\cos ^{2}(x)=1
$$

Case (2): If both of the powers are even, then we use one of the following forms:

$$
\sin ^{2}(x)=\frac{1}{2}(1-\cos 2 x) \text { or } \cos ^{2}(x)=\frac{1}{2}(1+\cos 2 x)
$$

Examples: Evaluate the following integrals:

1) $\int \sin ^{2}(x) \cos ^{3}(x) d x \quad[n:$ odd $\& m:$ even \longrightarrow case $(1)]$
$=\int \sin ^{2}(x) \cos (x) \cos ^{2}(x) d x$
$=\int \sin ^{2}(x) \cos (x)\left(1-\sin ^{2}(x)\right) d x$
$=\int \underbrace{\sin ^{2}(x)}_{u} \underbrace{\cos (x) d x}_{d u}-\int \underbrace{\sin ^{4}(x)}_{u} \cos (x) d x$
$=\frac{\sin ^{3}(x)}{3}-\frac{\sin ^{5}(x)}{5}+C$
2) $\int \sin ^{3}(x) \cos ^{3}(x) d x \quad[n:$ odd $\& m:$ odd \longrightarrow case $(1)]$

$$
\begin{aligned}
& =\int \sin ^{3}(x) \cos (x) \cos ^{2}(x) d x \\
& =\int \sin ^{3}(x) \cos (x)\left(1-\sin ^{2}(x)\right) d x \\
& =\int \sin ^{3}(x) \cos (x) d x-\int \sin ^{5}(x) \cos (x) d x \\
& =\frac{\sin ^{4}(x)}{4}-\frac{\sin ^{6}(x)}{6}+C
\end{aligned}
$$

Mathematical

MSC. Sarai Hamza
First stage /Lecter 4
C. To find the integral for:

$$
\int \cot ^{n}(x) \csc ^{m}(x)
$$

Case (1): If the power of $\csc (x)$ is even, we divide the $\csc (x)$ as:

$$
\csc ^{m}(x)=\csc ^{m-2}(x) \csc ^{2}(x) \& \text { we use } \csc ^{2}(x)=1+\cot ^{2}(x)
$$

Case (2): If the power of $\cot (x)$ is odd, we divide the $\cot (x)$ as:

$$
\cot ^{n}(x)=\cot ^{n-1}(x) \cot (x) \& \text { we use } \cot ^{2}(x)=\csc ^{2}(x)-1
$$

Examples: Evaluate the following integrals:

$$
\begin{aligned}
& \int \csc ^{4}(x) \cot ^{2}(x) d x \\
& =\int \csc ^{2}(x) \csc ^{2}(x) \cot ^{2}(x) d x \\
& =\int\left(1+\cot ^{2}(x)\right) \csc ^{2}(x) \cot ^{2}(x) d x \\
& =\int \frac{\cot ^{2}(x) \csc ^{2}(x) d x+\int \cot ^{4}(x) \csc ^{2}(x) d x d x}{u} \\
& =-\frac{\cot ^{3}(x)}{3}-\frac{\cot ^{5}(x)}{5}+C
\end{aligned}
$$

2) $\int \frac{\cot ^{3}(x)}{\sqrt{\csc (x)}} d x$

$$
\begin{aligned}
& =\int \cot ^{2}(x) \cot (x) \csc ^{\frac{-1}{2}}(x) d x \\
& =\int\left(\csc ^{2}(x)-1\right) \cot (x) \csc ^{\frac{-1}{2}}(x) d x \\
& =\int \csc ^{\frac{3}{2}}(x) \cot (x) d x-\int \cot (x) \csc ^{\frac{-1}{2}}(x) d x \\
& =\int \csc ^{\frac{1}{2}}(x) \csc (x) \cot (x) d x-\int \csc ^{\frac{-3}{2}}(x) \csc (x) \cot (x)(x) d x \\
& u \\
& =\frac{\csc ^{\frac{3}{2}}(x)}{\frac{3}{2}}-\frac{\csc ^{\frac{-1}{2}}(x)}{\frac{-1}{2}}+C
\end{aligned}
$$

