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Introduction 
 In this chapter we will concentrate on the behavior of slender members subjected

to torsional loading that is, loading by couples that produce twisting of the member
about its axis.

 Figure (4.1) shows a common example of torsional loading and indicates the shear
stresses and the stress resultant associated with torsion.

 In Figure (4.1), shaft AB is say a torsion member.

 The shaft AB is subjected to equal and opposite torques of magnitude T that twist
one end relative to the other.

Figure (4.1): An example of torsion 

 Several names are applied to torsion members, depending on the application:

 shaft,

 torque tube,

 torsion rod,

 Torsion bar, or

 Simply torsion member.

Murtadha Al-Masoudy Torsion
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 Analogy Between Axial Deformation and Torsion

 There is a direct analogy between axial deformation and torsion, as indicated by the
entries in Table 4.1.

Sign convention 
      A sign convention for torsion is defined as follows: 

 The longitudinal axis of the bar is labeled the x axis, with one end of the member
being taken as the origin.

 A positive torque, T(x), is a moment that acts on the cross section at x in a right-
hand-rule sense about the outer normal to the cross section. On a cross sectional cut
at x there will be equal and opposite torques T(x), as indicated in Figure (4.2b).

 A positive angle of rotation, ∅(𝒙𝒙), is a rotation of the cross section at x in a right-
hand-rule sense about the x axis, as illustrated in Figure (4.2c).

Figure (4.2): Torsional deformation; Sign convention for torsion 
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Assumptions 
Following assumptions are made, while finding out shear stress in a circular shaft 
subjected to torsion: 

1) The material of the shaft is uniform,

2) The twist along the shaft is uniform,

3) Normal cross – sections of the shaft, which were plane and circular before the twist,
remain plane and circular even after the twist, and

4) All diameters of the normal cross – section, which were straight before the twist, remain
straight with their magnitude unchanged, after the twist.

Strain-Displacement Analysis 
To determine the distribution of shearing strains in a 
circular shaft of length L and radius c that has been 
twisted through an angle ∅ (Figure 4.3a). 

 Detaching from the shaft a cylinder of radius r,
we consider the small square element before any
load is applied (Figure 4.3b).

 As the shaft is subjected to a torsional load, the
element deforms into a rhombus (Figure 4.3c).

 The shearing strain 𝜸𝜸 in a given element is
measured by the change in the angles formed by
the sides of that element.

 Since the circles defining two of the sides of the
element considered here remain unchanged, the
shearing strain 𝜸𝜸 must be equal to the angle
between lines AB and A'B.

 We observe from Figure (4.3c) that, for small
values of 𝜸𝜸, we can express the arc length AA' as:

𝐴𝐴𝐴𝐴′ = 𝛾𝛾𝛾𝛾 

 But, on the other hand, we have:

𝐴𝐴𝐴𝐴′ = 𝜌𝜌∅ 

Murtadha Al-Masoudy 
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 It follows that:

𝜌𝜌∅ = 𝛾𝛾𝛾𝛾 

Or 

 𝛾𝛾 =
𝜌𝜌∅
𝐿𝐿 … (4.1) 

Where 𝜸𝜸 and ∅ are both expressed in radians. 

 It follows from Eq. (4.1) that the shearing strain is maximum on the surface of the
shaft, where 𝝆𝝆 = 𝒄𝒄. We have:

 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐.∅
𝐿𝐿 … (4.2) 

 Eliminating ∅ from Eqs. (4.1) and (4.2), we can express the shearing strain g at a
distance r from the axis of the shaft as:

  𝛾𝛾 =
𝜌𝜌
𝑐𝑐 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚       … (4.3) 

STRESSES IN THE ELASTIC RANGE 

 Let us now consider the case when the torque T is such that all shearing stresses in
the shaft remain below the yield strength 𝜏𝜏𝑦𝑦.

 Recalling Hooke’s law for shearing stress and strain:

   𝜏𝜏 = 𝐺𝐺𝐺𝐺      … (4.4)

Where G is the modulus of rigidity or shear modulus of the material. 

Multiplying both members of Eq. (4.3) by G, we write: 

   𝐺𝐺𝐺𝐺 =
𝜌𝜌
𝑐𝑐 𝐺𝐺𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚     … (4.5) 

    𝜏𝜏 =
𝜌𝜌
𝑐𝑐 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚    … (4.6) 

 Figure (4.4a) shows the stress distribution in a solid circular shaft of radius c, and
Figure (4.4b) in a hollow circular shaft of inner radius c1 and outer radius c2. From
Eq. (4.6), we find that, in the latter case,
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   𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐1
𝑐𝑐2
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚   … (4.7) 

 The sum of the moments of the elementary forces exerted on any cross section of
the shaft must be equal to the magnitude T of the torque exerted on the shaft:

Figure (4.4): Distribution of shearing stresses. 

�𝜌𝜌(𝜏𝜏𝜏𝜏𝜏𝜏) = 𝑇𝑇     … (4.8) 

Substituting for 𝝉𝝉 from (4.6) into (4.8), we write: 

 𝑇𝑇 = �𝜌𝜌(𝜏𝜏𝜏𝜏𝜏𝜏) =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 �𝜌𝜌2 𝑑𝑑𝑑𝑑     … (4.9) 

But, ∫𝜌𝜌2 𝑑𝑑𝑑𝑑 = 𝐽𝐽 ( 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢:), then: 

 𝑇𝑇 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 𝐽𝐽
𝑐𝑐 … (4.10) 

   𝑜𝑜𝑜𝑜         𝝉𝝉𝒎𝒎𝒎𝒎𝒎𝒎 =
𝑻𝑻. 𝒄𝒄
𝑱𝑱 … (4.11) 

 Substituting for 𝝉𝝉𝒎𝒎𝒎𝒎𝒎𝒎 from Eqs.(4.11) into (4.6), we express the shearing stress at
any distance 𝝆𝝆 from the axis of the shaft as:

 𝝉𝝉 =
𝑻𝑻𝑻𝑻
𝑱𝑱 … (4.12) 

Equations (4.11) and (4.12) are known as the elastic torsion formulas. 

 Substituting for (𝜸𝜸) from Eq. (4.1) into Eq. (4.4) and then substituting for (𝝉𝝉) from
Eq. (4.4) into Eq.(4.12), we express the angle of twist (∅) in term of the torque (T):
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 ∅ =
𝑇𝑇𝑇𝑇
𝐺𝐺𝐺𝐺 … (4.13) 

Recall from statics that the polar moment of inertia of a circle of radius (r) is: 

𝐽𝐽 =
1
2𝜋𝜋𝑟𝑟

4 

 In the case of a hollow circular shaft of inner radius (c1) and outer radius (c2), the
polar moment of inertia is:

𝐽𝐽 =
1
2𝜋𝜋𝑐𝑐2

4 −
1
2𝜋𝜋𝑐𝑐1

4 =
1
2𝜋𝜋

(𝑐𝑐24 − 𝑐𝑐14) 

 In Eq. 4.13, the torque-twist equation, T, G, and J may each vary with x as shown
in Figure (4.5). This derivative form of the torque-twist equation may be integrated
over the length of the member to give:

 ∅ = �
𝑇𝑇(𝑥𝑥).𝑑𝑑𝑑𝑑
𝐺𝐺(𝑥𝑥). 𝐽𝐽(𝑥𝑥)

𝐿𝐿

0

 … (4.14) 

Figure (4.5) 

Examples 
Example (4.1): A uniform shaft of radius r and length L is subjected to a uniform 
distributed external torque t0 (moment per unit length). (See Figure 4.6)  

(a) Determine an expression for the maximum shear stress 𝝉𝝉𝒎𝒎𝒎𝒎𝒎𝒎. 

(b) Determine an expression for the total twist angle ∅ = ∅𝐿𝐿.

Murtadha Al-Masoudy 
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Figure (4.6) 

Solution: 

a) 

Equilibrium: On the section at x, the internal torque T(x) 
in the positive sense according to the right-hand rule is:  

∑𝑀𝑀𝑥𝑥 = 0 

𝑇𝑇(𝑥𝑥) = 𝑡𝑡𝑜𝑜(𝐿𝐿 − 𝑥𝑥) 

Shear Stress: The maximum shear stress occurs at x = 0, 
where 𝑇𝑇(0) = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑡𝑡𝑜𝑜(𝐿𝐿).Then, from the torsion formula, Eq. 4.11, 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑡𝑡𝑜𝑜(𝐿𝐿). 𝑟𝑟
𝜋𝜋
2 𝑟𝑟

4
=

2𝑡𝑡𝑜𝑜(𝐿𝐿)
𝜋𝜋𝑟𝑟3

b) 

Torque-Twist: From the torque-twist relationship, Eq. 4.14, 

∅𝐿𝐿 = �
𝑡𝑡𝑜𝑜(𝐿𝐿 − 𝑥𝑥) .𝑑𝑑𝑑𝑑

𝐺𝐺. 𝐽𝐽

𝐿𝐿

0

=
𝑡𝑡𝑜𝑜
𝐺𝐺. 𝐽𝐽 �(𝐿𝐿 − 𝑥𝑥) .𝑑𝑑𝑑𝑑

𝐿𝐿

0

 

∅𝐿𝐿 =
𝑡𝑡𝑜𝑜
𝐺𝐺. 𝐽𝐽 �

𝐿𝐿𝐿𝐿 −
𝑥𝑥2

2 �0

𝐿𝐿

=
𝑡𝑡𝑜𝑜 . 𝐿𝐿2

2𝐺𝐺. 𝐽𝐽 =
𝑡𝑡𝑜𝑜. 𝐿𝐿2

𝐺𝐺.𝜋𝜋. 𝑟𝑟4
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Example (4.2): A hollow cylindrical steel shaft is 1.5 m long and has inner and outer 
diameters respectively equal to 40 and 60 mm (Figure 4.7).  

(a) What is the largest torque that can be applied to the shaft if the shearing stress is not
to exceed 120 MPa?

(b) What is the corresponding minimum value of the shearing stress in the shaft?

Figure (4.7) 

Solution: 

(a) Largest Permissible Torque.

The largest torque T that can be applied to the shaft is the torque for which 𝝉𝝉𝒎𝒎𝒎𝒎𝒎𝒎 =120 
MPa. Since this value is less than the yield strength for steel, we can use Eq. (4.11). 
Solving this equation for T, we have: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇. 𝑐𝑐
𝐽𝐽 → 𝑇𝑇 =

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 𝐽𝐽
𝑐𝑐

𝐽𝐽 =
1
2𝜋𝜋𝑐𝑐2

4 −
1
2𝜋𝜋𝑐𝑐1

4 =
1
2𝜋𝜋

(𝑐𝑐24 − 𝑐𝑐14) 

𝑐𝑐1 =
40
2 = 20 𝑚𝑚𝑚𝑚 ( 𝑜𝑜𝑜𝑜 0.02 𝑚𝑚) 

𝑐𝑐2 =
60
2 = 30 𝑚𝑚𝑚𝑚 ( 𝑜𝑜𝑜𝑜 0.03 𝑚𝑚) 

𝐽𝐽 =
1
2𝜋𝜋

((0.03)4 − (0.02)4) = 1.021 × 10−6 𝑚𝑚4 

Murtadha Al-Masoudy 
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𝑇𝑇 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 𝐽𝐽
𝑐𝑐 =

(120 × 106 𝑃𝑃𝑃𝑃)(1.021 × 10−6 𝑚𝑚4)
0.03 = 4.08 𝑘𝑘𝑘𝑘.𝑚𝑚 

(b) Minimum Shearing Stress. The minimum value of the shearing stress occurs on the
inner surface of the shaft. It is obtained from Eq. (4.7), which expresses that 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚and
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚are respectively proportional to c1 and c2:

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐1
𝑐𝑐2
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐1
𝑐𝑐2
𝜏𝜏𝑚𝑚𝑎𝑎𝑎𝑎 =

0.02
0.03

(120) = 80 𝑀𝑀𝑀𝑀𝑀𝑀

Example (4.3): What is the minimum diameter of a solid steel shaft that will not twist 
through more than (3o) in a (6 m) length when subjected to a torque of (14 kN.m)? What 
maximum shearing stress is developed? Use G = 83 GPa. 

Solution: 

∅ =
𝑇𝑇𝑇𝑇
𝐺𝐺𝐺𝐺 → 3 �

𝜋𝜋
180�

=
(14 × 103)(6)

(83 × 109) �𝜋𝜋2 𝑟𝑟
4�

→ 𝑟𝑟 = 59.23 𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑑𝑑 = 118.5 𝑚𝑚𝑚𝑚

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇𝑇𝑇
𝐽𝐽 =

14 × 106(59.23)
𝜋𝜋
2 (59.23)4

= 42.9 𝑀𝑀𝑀𝑀𝑀𝑀 

Example (4.4): Determine the length of the shortest (2mm) diameter bronze wire which 
can be twisted through two complete turns without exceeding a shearing stress of (70 
MPa). Use G = 83 GPa. 

Solution: 

𝐽𝐽 =
𝜋𝜋

32𝑑𝑑
4 =

𝜋𝜋
32 (2)4 = 1.571 𝑚𝑚𝑚𝑚4

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇. 𝑐𝑐
𝐽𝐽 → 𝑇𝑇 =

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 𝐽𝐽
𝑐𝑐 → 

𝑇𝑇 =
70 (𝜋𝜋(1)4)

2(1)
→ 𝑇𝑇 ≅ 110 𝑁𝑁.𝑚𝑚𝑚𝑚
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∅ =
𝑇𝑇𝑇𝑇
𝐺𝐺𝐺𝐺 → 720 �

𝜋𝜋
180�

=
(110)(𝑙𝑙)

(83 × 103)(1.571) 

→ 𝑙𝑙 = 14895 𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜 14.895 𝑚𝑚

Example (4.5): A compound shaft consisting of an aluminum segment and a steel 
segment is acted upon by two torque as shown in Figure (4.8). Determine the maximum 
permissible value of (T) subjected to the following conditions (𝝉𝝉𝒔𝒔 ≤ 𝟏𝟏𝟏𝟏𝟏𝟏 𝑴𝑴𝑴𝑴𝑴𝑴 ,  𝝉𝝉𝒂𝒂𝒂𝒂 ≤
𝟕𝟕𝟕𝟕 𝑴𝑴𝑴𝑴𝑴𝑴,  and the angle of rotation of the free end limited to (12o). Use Gs = 83 GPa and 
Gal = 28 GPa.  

Solution: 

𝜏𝜏𝑠𝑠 =
𝑇𝑇. 𝑐𝑐
𝐽𝐽 → 𝑇𝑇 =

𝜏𝜏𝑠𝑠. 𝐽𝐽
𝑐𝑐 → 𝑇𝑇𝑠𝑠 =

𝜏𝜏𝑠𝑠(𝜋𝜋𝑐𝑐4)
2. 𝑐𝑐 =

𝜏𝜏𝑠𝑠(𝜋𝜋𝑐𝑐3)
2 =

100 (𝜋𝜋(25)3)
2 × 10−3

= 2454.37 𝑁𝑁.𝑚𝑚 

𝑇𝑇𝑎𝑎𝑎𝑎 =
𝜏𝜏𝑠𝑠(𝜋𝜋𝑐𝑐3)

2 =
70 (𝜋𝜋(37.5)3)

2 × 10−3 = 5798.45 𝑁𝑁.𝑚𝑚 

Section in steel shaft:

𝑇𝑇𝑠𝑠 = 2𝑇𝑇 → 𝑇𝑇 =
𝑇𝑇𝑠𝑠
2 =

2454.37
2 = 1227.2 𝑁𝑁.𝑚𝑚 

T 2T

2 m 1.5 m

Aluminum

Steel

D=75 mm D=50 mm

Figure (4.8)

2T

=2T
s

T
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Section in aluminum shaft: 

𝑇𝑇𝑎𝑎𝑎𝑎 = 3𝑇𝑇 → 𝑇𝑇 =
𝑇𝑇𝑎𝑎𝑎𝑎
3 =

5798.45
3 = 1932.82 𝑁𝑁.𝑚𝑚 

∅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∅𝑠𝑠 + ∅𝑎𝑎𝑎𝑎 

12 �
𝜋𝜋

180�
=

2𝑇𝑇(1.5)

(83 × 109) 𝜋𝜋32 (50)4 × 10−12
+

3𝑇𝑇(2)

(83 × 109) 𝜋𝜋32 (75)4 × 10−12

12 = 7.328 × 10−3𝑇𝑇 → 𝑇𝑇 = 1637.53 𝑁𝑁.𝑚𝑚 

Use T = 1227.2  N.m 

Example (4.6): For the shaft shown in Figure (4.9), find the maximum shear stress and 
total angle of rotation. Assume G=83 GPa and diameter of shaft (25 mm). 

     Figure (4.9) 

Solution: 

Sec.(1-1) as F.B.D. 

𝑇𝑇 = 450𝑥𝑥 

Sec.(2-2) as F.B.D. 

𝑇𝑇 = 450(250) 

     𝑇𝑇 = 112500 𝑁𝑁.𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜 112.5 𝑁𝑁.𝑚𝑚 

Sec.(3-3) as F.B.D. 

𝑇𝑇 + 112.5 = 450(250) × 10−3 

→ 𝑇𝑇 = 0

T

2T
=3T

al
T

125 mm 125 mm 250 mm

450 N.mm/mm112.5 N.m
1

1
T

x1

2

2

450 N.mm/mm
2

T

450 N.mm/mm 112.5 N.m

3
T

3

3
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∴ 𝑇𝑇 = 112.5 𝑁𝑁.𝑚𝑚      (𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) 

∴ 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇. 𝑐𝑐
𝐽𝐽 =

 (112.5 × 103)(12.5)
𝜋𝜋
2 (12.5)4

= 36.67 𝑀𝑀𝑀𝑀𝑀𝑀 

∅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ∑∅𝑖𝑖 = 0 + ∅1 + ∅2 

∅1 = �
(450𝑥𝑥)𝑑𝑑𝑑𝑑

𝐺𝐺𝐺𝐺 =
450𝑥𝑥2

2𝐺𝐺𝐺𝐺 �
0

250

=
450(250)2

2(84 × 103) � 𝜋𝜋32 (25)4�

250

0

∅1 = 4.365 × 10−3 𝑟𝑟𝑟𝑟𝑟𝑟. 

∅2 =
112.5 × 103(125)

(84 × 103) � 𝜋𝜋32 (25)4�
= 4.365 × 10−3 𝑟𝑟𝑟𝑟𝑟𝑟. 

∅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = [4.365 × 10−3 + 4.365 × 10−3]
180
𝜋𝜋 = 0.5𝑜𝑜 

Example (4.7): Find the total angle of rotation for the prismatic shaft shown in Figure 
(4.10), which is subjected to distributed torsional moment (T(x)=kx N.mm/mm), GJ and k 
are constants. 

Figure (4.10) 

Solution:

𝑇𝑇 = �(𝑘𝑘𝑘𝑘)𝑑𝑑𝑑𝑑 =
𝑘𝑘𝑥𝑥2

2

𝑥𝑥

0

l

N.mm/mm =kx
(x)

T

x

Murtadha Al-Masoudy 
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∅ = �
𝑇𝑇
𝐺𝐺𝐺𝐺 𝑑𝑑𝑑𝑑

𝑙𝑙

0

=
1
𝐺𝐺𝐺𝐺�

𝑘𝑘𝑥𝑥2

2 𝑑𝑑𝑑𝑑
𝑙𝑙

0

 

∴ ∅ =
1

2𝐺𝐺𝐺𝐺 �
𝑘𝑘𝑥𝑥3

3 �
0

𝑙𝑙

=
𝑘𝑘𝑙𝑙3

6𝐺𝐺𝐺𝐺

To find max. Shear stress: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
16𝑇𝑇
𝜋𝜋𝑑𝑑3 =

16𝑘𝑘𝑥𝑥2

2𝜋𝜋𝑑𝑑3 �𝑥𝑥=𝑙𝑙
=

16𝑘𝑘𝑙𝑙2

2𝜋𝜋𝑑𝑑3 =
8𝑘𝑘𝑙𝑙2

𝜋𝜋𝑑𝑑3

Example (4.8): For the non – prismatic shaft shown in Figure (4.11). Find the total 
rotation. 

Solution: 

𝑑𝑑1 − 𝑑𝑑2
2
𝑙𝑙 =

𝑦𝑦
𝑥𝑥

→ 𝑦𝑦 =
𝑑𝑑1 − 𝑑𝑑2

2𝑙𝑙 𝑥𝑥      

∅ = �
𝑇𝑇(𝑥𝑥)𝑑𝑑𝑑𝑑
𝐺𝐺𝐽𝐽(𝑥𝑥)

𝑙𝑙

0

𝐽𝐽(𝑥𝑥) =
𝜋𝜋

32 (𝐷𝐷(𝑥𝑥))4 

𝐷𝐷(𝑥𝑥) = 2𝑦𝑦 + 𝑑𝑑2 =
𝑑𝑑1 − 𝑑𝑑2

𝑙𝑙 𝑥𝑥 + 𝑑𝑑2 

𝐽𝐽(𝑥𝑥) =
𝜋𝜋

32 �
𝑑𝑑1 − 𝑑𝑑2

𝑙𝑙 𝑥𝑥 + 𝑑𝑑2�
4

𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 

𝑻𝑻 

𝒅𝒅𝟐𝟐 

𝑻𝑻 

𝒙𝒙 

𝒚𝒚 

Figure (4.11)

𝒍𝒍 

𝑻𝑻(𝒙𝒙) = 𝑻𝑻 

Murtadha Al-Masoudy 
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∅ = �
𝑇𝑇𝑑𝑑𝑑𝑑

𝐺𝐺 𝜋𝜋
32 �

𝑑𝑑1 − 𝑑𝑑2
𝑙𝑙 𝑥𝑥 + 𝑑𝑑2�

4

𝑙𝑙

0

=
32𝑇𝑇
𝐺𝐺𝐺𝐺 ��

𝑑𝑑1 − 𝑑𝑑2
𝑙𝑙 𝑥𝑥 + 𝑑𝑑2�

−4

𝑑𝑑𝑑𝑑
𝑙𝑙

0

 

Multiply by 
𝑑𝑑1−𝑑𝑑2

𝑙𝑙
𝑑𝑑1−𝑑𝑑2

𝑙𝑙

, get:  

∅ =
32𝑇𝑇

𝐺𝐺𝐺𝐺(𝑑𝑑1 − 𝑑𝑑2) ��
𝑑𝑑1 − 𝑑𝑑2

𝑙𝑙 𝑥𝑥 + 𝑑𝑑2�
−3

.
1
−3�0

𝑙𝑙

=
32𝑇𝑇

−3𝐺𝐺𝜋𝜋(𝑑𝑑1 − 𝑑𝑑2) �
(𝑑𝑑1 )−3 − (𝑑𝑑2 )−3� 

∅ =
32𝑇𝑇
3𝐺𝐺𝐺𝐺 �

(𝑑𝑑1 )2 + 𝑑𝑑1𝑑𝑑2 + (𝑑𝑑2 )2

(𝑑𝑑1 )3(𝑑𝑑2 )3
� 

Murtadha Al-Masoudy 
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