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Introduction 
 In this chapter we will concentrate on the behavior of slender members subjected

to torsional loading that is, loading by couples that produce twisting of the member
about its axis.

 Figure (4.1) shows a common example of torsional loading and indicates the shear
stresses and the stress resultant associated with torsion.

 In Figure (4.1), shaft AB is say a torsion member.

 The shaft AB is subjected to equal and opposite torques of magnitude T that twist
one end relative to the other.

Figure (4.1): An example of torsion 

 Several names are applied to torsion members, depending on the application:

 shaft,

 torque tube,

 torsion rod,

 Torsion bar, or

 Simply torsion member.

Murtadha Al-Masoudy Torsion
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 Analogy Between Axial Deformation and Torsion

 There is a direct analogy between axial deformation and torsion, as indicated by the
entries in Table 4.1.

Sign convention 
      A sign convention for torsion is defined as follows: 

 The longitudinal axis of the bar is labeled the x axis, with one end of the member
being taken as the origin.

 A positive torque, T(x), is a moment that acts on the cross section at x in a right-
hand-rule sense about the outer normal to the cross section. On a cross sectional cut
at x there will be equal and opposite torques T(x), as indicated in Figure (4.2b).

 A positive angle of rotation, ∅(𝒙𝒙), is a rotation of the cross section at x in a right-
hand-rule sense about the x axis, as illustrated in Figure (4.2c).

Figure (4.2): Torsional deformation; Sign convention for torsion 
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Assumptions 
Following assumptions are made, while finding out shear stress in a circular shaft 
subjected to torsion: 

1) The material of the shaft is uniform,

2) The twist along the shaft is uniform,

3) Normal cross – sections of the shaft, which were plane and circular before the twist,
remain plane and circular even after the twist, and

4) All diameters of the normal cross – section, which were straight before the twist, remain
straight with their magnitude unchanged, after the twist.

Strain-Displacement Analysis 
To determine the distribution of shearing strains in a 
circular shaft of length L and radius c that has been 
twisted through an angle ∅ (Figure 4.3a). 

 Detaching from the shaft a cylinder of radius r,
we consider the small square element before any
load is applied (Figure 4.3b).

 As the shaft is subjected to a torsional load, the
element deforms into a rhombus (Figure 4.3c).

 The shearing strain 𝜸𝜸 in a given element is
measured by the change in the angles formed by
the sides of that element.

 Since the circles defining two of the sides of the
element considered here remain unchanged, the
shearing strain 𝜸𝜸 must be equal to the angle
between lines AB and A'B.

 We observe from Figure (4.3c) that, for small
values of 𝜸𝜸, we can express the arc length AA' as:

𝐴𝐴𝐴𝐴′ = 𝛾𝛾𝛾𝛾 

 But, on the other hand, we have:

𝐴𝐴𝐴𝐴′ = 𝜌𝜌∅ 
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 It follows that:

𝜌𝜌∅ = 𝛾𝛾𝛾𝛾 

Or 

 𝛾𝛾 =
𝜌𝜌∅
𝛾𝛾 … (4.1) 

Where 𝜸𝜸 and ∅ are both expressed in radians. 

 It follows from Eq. (4.1) that the shearing strain is maximum on the surface of the
shaft, where 𝝆𝝆 = 𝒄𝒄. We have:

 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐.∅
𝛾𝛾 … (4.2) 

 Eliminating ∅ from Eqs. (4.1) and (4.2), we can express the shearing strain g at a
distance r from the axis of the shaft as:

  𝛾𝛾 =
𝜌𝜌
𝑐𝑐 𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚       … (4.3) 

STRESSES IN THE ELASTIC RANGE 

 Let us now consider the case when the torque T is such that all shearing stresses in
the shaft remain below the yield strength 𝜏𝜏𝑦𝑦.

 Recalling Hooke’s law for shearing stress and strain:

   𝜏𝜏 = 𝐺𝐺𝛾𝛾      … (4.4)

Where G is the modulus of rigidity or shear modulus of the material. 

Multiplying both members of Eq. (4.3) by G, we write: 

   𝐺𝐺𝛾𝛾 =
𝜌𝜌
𝑐𝑐 𝐺𝐺𝛾𝛾𝑚𝑚𝑚𝑚𝑚𝑚     … (4.5) 

    𝜏𝜏 =
𝜌𝜌
𝑐𝑐 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚    … (4.6) 

 Figure (4.4a) shows the stress distribution in a solid circular shaft of radius c, and
Figure (4.4b) in a hollow circular shaft of inner radius c1 and outer radius c2. From
Eq. (4.6), we find that, in the latter case,
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   𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐1
𝑐𝑐2
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚   … (4.7) 

 The sum of the moments of the elementary forces exerted on any cross section of
the shaft must be equal to the magnitude T of the torque exerted on the shaft:

Figure (4.4): Distribution of shearing stresses. 

�𝜌𝜌(𝜏𝜏𝜏𝜏𝐴𝐴) = 𝑇𝑇     … (4.8) 

Substituting for 𝝉𝝉 from (4.6) into (4.8), we write: 

 𝑇𝑇 = �𝜌𝜌(𝜏𝜏𝜏𝜏𝐴𝐴) =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐 �𝜌𝜌2 𝜏𝜏𝐴𝐴     … (4.9) 

But, ∫𝜌𝜌2 𝜏𝜏𝐴𝐴 = 𝐽𝐽 ( 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑚𝑚𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃𝑜𝑜 𝑢𝑢𝑚𝑚𝑚𝑚𝑃𝑃𝑚𝑚𝑢𝑢𝑃𝑃:), then: 

 𝑇𝑇 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 𝐽𝐽
𝑐𝑐 … (4.10) 

   𝑃𝑃𝑃𝑃         𝝉𝝉𝒎𝒎𝒎𝒎𝒙𝒙 =
𝑻𝑻. 𝒄𝒄
𝑱𝑱 … (4.11) 

 Substituting for 𝝉𝝉𝒎𝒎𝒎𝒎𝒙𝒙 from Eqs.(4.11) into (4.6), we express the shearing stress at
any distance 𝝆𝝆 from the axis of the shaft as:

 𝝉𝝉 =
𝑻𝑻𝝆𝝆
𝑱𝑱 … (4.12) 

Equations (4.11) and (4.12) are known as the elastic torsion formulas. 

 Substituting for (𝜸𝜸) from Eq. (4.1) into Eq. (4.4) and then substituting for (𝝉𝝉) from
Eq. (4.4) into Eq.(4.12), we express the angle of twist (∅) in term of the torque (T):
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 ∅ =
𝑇𝑇𝑃𝑃
𝐺𝐺𝐽𝐽 … (4.13) 

Recall from statics that the polar moment of inertia of a circle of radius (r) is: 

𝐽𝐽 =
1
2𝜋𝜋𝑃𝑃

4 

 In the case of a hollow circular shaft of inner radius (c1) and outer radius (c2), the
polar moment of inertia is:

𝐽𝐽 =
1
2𝜋𝜋𝑐𝑐2

4 −
1
2𝜋𝜋𝑐𝑐1

4 =
1
2𝜋𝜋

(𝑐𝑐24 − 𝑐𝑐14) 

 In Eq. 4.13, the torque-twist equation, T, G, and J may each vary with x as shown
in Figure (4.5). This derivative form of the torque-twist equation may be integrated
over the length of the member to give:

 ∅ = �
𝑇𝑇(𝑥𝑥).𝜏𝜏𝑥𝑥
𝐺𝐺(𝑥𝑥). 𝐽𝐽(𝑥𝑥)

𝐿𝐿

0

 … (4.14) 

Figure (4.5) 

Examples 
Example (4.1): A uniform shaft of radius r and length L is subjected to a uniform 
distributed external torque t0 (moment per unit length). (See Figure 4.6)  

(a) Determine an expression for the maximum shear stress 𝝉𝝉𝒎𝒎𝒎𝒎𝒙𝒙. 

(b) Determine an expression for the total twist angle ∅ = ∅𝐿𝐿.
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Figure (4.6) 

Solution: 

a) 

Equilibrium: On the section at x, the internal torque T(x) 
in the positive sense according to the right-hand rule is:  

∑𝑀𝑀𝑚𝑚 = 0 

𝑇𝑇(𝑥𝑥) = 𝑚𝑚𝑜𝑜(𝛾𝛾 − 𝑥𝑥) 

Shear Stress: The maximum shear stress occurs at x = 0, 
where 𝑇𝑇(0) = 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑜𝑜(𝛾𝛾).Then, from the torsion formula, Eq. 4.11, 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑚𝑚𝑜𝑜(𝛾𝛾). 𝑃𝑃
𝜋𝜋
2 𝑃𝑃

4
=

2𝑚𝑚𝑜𝑜(𝛾𝛾)
𝜋𝜋𝑃𝑃3

b) 

Torque-Twist: From the torque-twist relationship, Eq. 4.14, 

∅𝐿𝐿 = �
𝑚𝑚𝑜𝑜(𝛾𝛾 − 𝑥𝑥) .𝜏𝜏𝑥𝑥

𝐺𝐺. 𝐽𝐽

𝐿𝐿

0

=
𝑚𝑚𝑜𝑜
𝐺𝐺. 𝐽𝐽 �(𝛾𝛾 − 𝑥𝑥) .𝜏𝜏𝑥𝑥

𝐿𝐿

0

 

∅𝐿𝐿 =
𝑚𝑚𝑜𝑜
𝐺𝐺. 𝐽𝐽 �

𝛾𝛾𝑥𝑥 −
𝑥𝑥2

2 �0

𝐿𝐿

=
𝑚𝑚𝑜𝑜 . 𝛾𝛾2

2𝐺𝐺. 𝐽𝐽 =
𝑚𝑚𝑜𝑜. 𝛾𝛾2

𝐺𝐺.𝜋𝜋. 𝑃𝑃4
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Example (4.2): A hollow cylindrical steel shaft is 1.5 m long and has inner and outer 
diameters respectively equal to 40 and 60 mm (Figure 4.7).  

(a) What is the largest torque that can be applied to the shaft if the shearing stress is not
to exceed 120 MPa?

(b) What is the corresponding minimum value of the shearing stress in the shaft?

Figure (4.7) 

Solution: 

(a) Largest Permissible Torque.

The largest torque T that can be applied to the shaft is the torque for which 𝝉𝝉𝒎𝒎𝒎𝒎𝒙𝒙 =120 
MPa. Since this value is less than the yield strength for steel, we can use Eq. (4.11). 
Solving this equation for T, we have: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇. 𝑐𝑐
𝐽𝐽 → 𝑇𝑇 =

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 𝐽𝐽
𝑐𝑐

𝐽𝐽 =
1
2𝜋𝜋𝑐𝑐2

4 −
1
2𝜋𝜋𝑐𝑐1

4 =
1
2𝜋𝜋

(𝑐𝑐24 − 𝑐𝑐14) 

𝑐𝑐1 =
40
2 = 20 𝑚𝑚𝑚𝑚 ( 𝑃𝑃𝑃𝑃 0.02 𝑚𝑚) 

𝑐𝑐2 =
60
2 = 30 𝑚𝑚𝑚𝑚 ( 𝑃𝑃𝑃𝑃 0.03 𝑚𝑚) 

𝐽𝐽 =
1
2𝜋𝜋

((0.03)4 − (0.02)4) = 1.021 × 10−6 𝑚𝑚4 

Murtadha Al-Masoudy 
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𝑇𝑇 =
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 𝐽𝐽
𝑐𝑐 =

(120 × 106 𝑃𝑃𝑃𝑃)(1.021 × 10−6 𝑚𝑚4)
0.03 = 4.08 𝑘𝑘𝑘𝑘.𝑚𝑚 

(b) Minimum Shearing Stress. The minimum value of the shearing stress occurs on the
inner surface of the shaft. It is obtained from Eq. (4.7), which expresses that 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚and
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚are respectively proportional to c1 and c2:

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐1
𝑐𝑐2
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑐𝑐1
𝑐𝑐2
𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =

0.02
0.03

(120) = 80 𝑀𝑀𝑃𝑃𝑃𝑃

Example (4.3): What is the minimum diameter of a solid steel shaft that will not twist 
through more than (3o) in a (6 m) length when subjected to a torque of (14 kN.m)? What 
maximum shearing stress is developed? Use G = 83 GPa. 

Solution: 

∅ =
𝑇𝑇𝑃𝑃
𝐺𝐺𝐽𝐽 → 3 �

𝜋𝜋
180�

=
(14 × 103)(6)

(83 × 109) �𝜋𝜋2 𝑃𝑃
4�

→ 𝑃𝑃 = 59.23 𝑚𝑚𝑚𝑚 𝑃𝑃𝑃𝑃 𝜏𝜏 = 118.5 𝑚𝑚𝑚𝑚

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇𝑃𝑃
𝐽𝐽 =

14 × 106(59.23)
𝜋𝜋
2 (59.23)4

= 42.9 𝑀𝑀𝑃𝑃𝑃𝑃 

Example (4.4): Determine the length of the shortest (2mm) diameter bronze wire which 
can be twisted through two complete turns without exceeding a shearing stress of (70 
MPa). Use G = 83 GPa. 

Solution: 

𝐽𝐽 =
𝜋𝜋

32𝜏𝜏
4 =

𝜋𝜋
32 (2)4 = 1.571 𝑚𝑚𝑚𝑚4

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇. 𝑐𝑐
𝐽𝐽 → 𝑇𝑇 =

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚. 𝐽𝐽
𝑐𝑐 → 

𝑇𝑇 =
70 (𝜋𝜋(1)4)

2(1)
→ 𝑇𝑇 ≅ 110 𝑘𝑘.𝑚𝑚𝑚𝑚
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∅ =
𝑇𝑇𝑃𝑃
𝐺𝐺𝐽𝐽 → 720 �

𝜋𝜋
180�

=
(110)(𝑃𝑃)

(83 × 103)(1.571) 

→ 𝑃𝑃 = 14895 𝑚𝑚𝑚𝑚  𝑃𝑃𝑃𝑃 14.895 𝑚𝑚

Example (4.5): A compound shaft consisting of an aluminum segment and a steel 
segment is acted upon by two torque as shown in Figure (4.8). Determine the maximum 
permissible value of (T) subjected to the following conditions (𝝉𝝉𝒔𝒔 ≤ 𝟏𝟏𝟏𝟏𝟏𝟏 𝑴𝑴𝑴𝑴𝒎𝒎 ,  𝝉𝝉𝒎𝒎𝒂𝒂 ≤
𝟕𝟕𝟏𝟏 𝑴𝑴𝑴𝑴𝒎𝒎,  and the angle of rotation of the free end limited to (12o). Use Gs = 83 GPa and 
Gal = 28 GPa.  

Solution: 

𝜏𝜏𝑠𝑠 =
𝑇𝑇. 𝑐𝑐
𝐽𝐽 → 𝑇𝑇 =

𝜏𝜏𝑠𝑠. 𝐽𝐽
𝑐𝑐 → 𝑇𝑇𝑠𝑠 =

𝜏𝜏𝑠𝑠(𝜋𝜋𝑐𝑐4)
2. 𝑐𝑐 =

𝜏𝜏𝑠𝑠(𝜋𝜋𝑐𝑐3)
2 =

100 (𝜋𝜋(25)3)
2 × 10−3

= 2454.37 𝑘𝑘.𝑚𝑚 

𝑇𝑇𝑚𝑚𝑎𝑎 =
𝜏𝜏𝑠𝑠(𝜋𝜋𝑐𝑐3)

2 =
70 (𝜋𝜋(37.5)3)

2 × 10−3 = 5798.45 𝑘𝑘.𝑚𝑚 

Section in steel shaft:

𝑇𝑇𝑠𝑠 = 2𝑇𝑇 → 𝑇𝑇 =
𝑇𝑇𝑠𝑠
2 =

2454.37
2 = 1227.2 𝑘𝑘.𝑚𝑚 

T 2T

2 m 1.5 m

Aluminum

Steel

D=75 mm D=50 mm

Figure (4.8)

2T

=2T
s

T
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Section in aluminum shaft: 

𝑇𝑇𝑚𝑚𝑎𝑎 = 3𝑇𝑇 → 𝑇𝑇 =
𝑇𝑇𝑚𝑚𝑎𝑎
3 =

5798.45
3 = 1932.82 𝑘𝑘.𝑚𝑚 

∅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = ∅𝑠𝑠 + ∅𝑚𝑚𝑎𝑎 

12 �
𝜋𝜋

180�
=

2𝑇𝑇(1.5)

(83 × 109) 𝜋𝜋32 (50)4 × 10−12
+

3𝑇𝑇(2)

(83 × 109) 𝜋𝜋32 (75)4 × 10−12

12 = 7.328 × 10−3𝑇𝑇 → 𝑇𝑇 = 1637.53 𝑘𝑘.𝑚𝑚 

Use T = 1227.2  N.m 

Example (4.6): For the shaft shown in Figure (4.9), find the maximum shear stress and 
total angle of rotation. Assume G=83 GPa and diameter of shaft (25 mm). 

     Figure (4.9) 

Solution: 

Sec.(1-1) as F.B.D. 

𝑇𝑇 = 450𝑥𝑥 

Sec.(2-2) as F.B.D. 

𝑇𝑇 = 450(250) 

     𝑇𝑇 = 112500 𝑘𝑘.𝑚𝑚𝑚𝑚  𝑃𝑃𝑃𝑃 112.5 𝑘𝑘.𝑚𝑚 

Sec.(3-3) as F.B.D. 

𝑇𝑇 + 112.5 = 450(250) × 10−3 

→ 𝑇𝑇 = 0

T

2T
=3T

al
T

125 mm 125 mm 250 mm

450 N.mm/mm112.5 N.m
1

1
T

x1

2

2

450 N.mm/mm
2

T

450 N.mm/mm 112.5 N.m

3
T

3

3
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∴ 𝑇𝑇 = 112.5 𝑘𝑘.𝑚𝑚      (𝐶𝐶𝑃𝑃𝑚𝑚𝑚𝑚𝑃𝑃𝑃𝑃𝑃𝑃) 

∴ 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑇𝑇. 𝑐𝑐
𝐽𝐽 =

 (112.5 × 103)(12.5)
𝜋𝜋
2 (12.5)4

= 36.67 𝑀𝑀𝑃𝑃𝑃𝑃 

∅𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑎𝑎 = ∑∅𝑚𝑚 = 0 + ∅1 + ∅2 

∅1 = �
(450𝑥𝑥)𝜏𝜏𝑥𝑥

𝐺𝐺𝐽𝐽 =
450𝑥𝑥2

2𝐺𝐺𝐽𝐽 �
0

250

=
450(250)2

2(84 × 103) � 𝜋𝜋32 (25)4�

250

0

∅1 = 4.365 × 10−3 𝑃𝑃𝑃𝑃𝜏𝜏. 

∅2 =
112.5 × 103(125)

(84 × 103) � 𝜋𝜋32 (25)4�
= 4.365 × 10−3 𝑃𝑃𝑃𝑃𝜏𝜏. 

∅𝑡𝑡𝑜𝑜𝑡𝑡𝑚𝑚𝑎𝑎 = [4.365 × 10−3 + 4.365 × 10−3]
180
𝜋𝜋 = 0.5𝑜𝑜 

Example (4.7): Find the total angle of rotation for the prismatic shaft shown in Figure 
(4.10), which is subjected to distributed torsional moment (T(x)=kx N.mm/mm), GJ and k 
are constants. 

Figure (4.10) 

Solution:

𝑇𝑇 = �(𝑘𝑘𝑥𝑥)𝜏𝜏𝑥𝑥 =
𝑘𝑘𝑥𝑥2

2

𝑚𝑚

0

l

N.mm/mm =kx
(x)

T

x
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∅ = �
𝑇𝑇
𝐺𝐺𝐽𝐽 𝜏𝜏𝑥𝑥

𝑎𝑎

0

=
1
𝐺𝐺𝐽𝐽�

𝑘𝑘𝑥𝑥2

2 𝜏𝜏𝑥𝑥
𝑎𝑎

0

 

∴ ∅ =
1

2𝐺𝐺𝐽𝐽 �
𝑘𝑘𝑥𝑥3

3 �
0

𝑎𝑎

=
𝑘𝑘𝑃𝑃3

6𝐺𝐺𝐽𝐽

To find max. Shear stress: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
16𝑇𝑇
𝜋𝜋𝜏𝜏3 =

16𝑘𝑘𝑥𝑥2

2𝜋𝜋𝜏𝜏3 �𝑚𝑚=𝑎𝑎
=

16𝑘𝑘𝑃𝑃2

2𝜋𝜋𝜏𝜏3 =
8𝑘𝑘𝑃𝑃2

𝜋𝜋𝜏𝜏3

Example (4.8): For the non – prismatic shaft shown in Figure (4.11). Find the total 
rotation. 

Solution: 

𝜏𝜏1 − 𝜏𝜏2
2
𝑃𝑃 =

𝑦𝑦
𝑥𝑥

→ 𝑦𝑦 =
𝜏𝜏1 − 𝜏𝜏2

2𝑃𝑃 𝑥𝑥      

∅ = �
𝑇𝑇(𝑚𝑚)𝜏𝜏𝑥𝑥
𝐺𝐺𝐽𝐽(𝑚𝑚)

𝑎𝑎

0

𝐽𝐽(𝑚𝑚) =
𝜋𝜋

32 (𝐷𝐷(𝑚𝑚))4 

𝐷𝐷(𝑚𝑚) = 2𝑦𝑦 + 𝜏𝜏2 =
𝜏𝜏1 − 𝜏𝜏2

𝑃𝑃 𝑥𝑥 + 𝜏𝜏2 

𝐽𝐽(𝑚𝑚) =
𝜋𝜋

32 �
𝜏𝜏1 − 𝜏𝜏2

𝑃𝑃 𝑥𝑥 + 𝜏𝜏2�
4

𝒅𝒅𝟏𝟏 𝒅𝒅𝟐𝟐 

𝑻𝑻 

𝒅𝒅𝟐𝟐 

𝑻𝑻 

𝒙𝒙 

𝒚𝒚 

Figure (4.11)

𝒂𝒂 

𝑻𝑻(𝒙𝒙) = 𝑻𝑻 

Murtadha Al-Masoudy 
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∅ = �
𝑇𝑇𝜏𝜏𝑥𝑥

𝐺𝐺 𝜋𝜋
32 �

𝜏𝜏1 − 𝜏𝜏2
𝑃𝑃 𝑥𝑥 + 𝜏𝜏2�

4

𝑎𝑎

0

=
32𝑇𝑇
𝐺𝐺𝜋𝜋 ��

𝜏𝜏1 − 𝜏𝜏2
𝑃𝑃 𝑥𝑥 + 𝜏𝜏2�

−4

𝜏𝜏𝑥𝑥
𝑎𝑎

0

 

Multiply by 
𝑑𝑑1−𝑑𝑑2

𝑙𝑙
𝑑𝑑1−𝑑𝑑2

𝑙𝑙

, get:  

∅ =
32𝑇𝑇

𝐺𝐺𝜋𝜋(𝜏𝜏1 − 𝜏𝜏2) ��
𝜏𝜏1 − 𝜏𝜏2

𝑃𝑃 𝑥𝑥 + 𝜏𝜏2�
−3

.
1
−3�0

𝑎𝑎

=
32𝑇𝑇

−3𝐺𝐺𝜋𝜋(𝜏𝜏1 − 𝜏𝜏2) �
(𝜏𝜏1 )−3 − (𝜏𝜏2 )−3� 

∅ =
32𝑇𝑇
3𝐺𝐺𝜋𝜋 �

(𝜏𝜏1 )2 + 𝜏𝜏1𝜏𝜏2 + (𝜏𝜏2 )2

(𝜏𝜏1 )3(𝜏𝜏2 )3
� 

Murtadha Al-Masoudy 


	1
	Strength of Material Luctures_Part11
	chap.04

	Strength of Material Luctures_Part12
	Strength of Material Luctures_Part13
	Strength of Material Luctures_Part14
	Strength of Material Luctures_Part15
	Strength of Material Luctures_Part16
	Strength of Material Luctures_Part17
	chap.05




