Solution of first order differential equation
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Homogenous differential equations —by substituting y=vx
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Here is an equation:
dy x+3y
dt 2
This looks simple enough, but we find that we cannot express the RHS in the

form of ‘x-factors’ and ‘y-factors’, so we cannot solve by the method of
separating the variables,



In this case we make the substitution y = vx, where v is a function of x.
So y = vx. Differentiate with respect to x (using the product rule):
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The equation now becomes v + x dx 3
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The given equation is now expressed in terms of v and x, and in this form we
find that we can solve by separating the variables. Here goes:
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So2In(l+v)=Inx+C=Inx+InA

(14v)* = Ax
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Buty=wvx .. v= {x} by (l ’) Ax
which gives (x + y)® = Ax’
dy x+3y < . )
Note: t—lx N is an example of a homogeneous differential equation.

This is determined by the fact that the total degree in x and y for each of the
terms involved Is the same (in this case, of degree 1). The key to solving every
homogeneous equation is to substitute y = vx where v is a function of x. This
converts the equation into a form which we can solve by separating the

variables.
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Example 2:




y dy x*+y2
Solve a = Xy
Here, all terms of the RHS are of degree 2, i.e. the equation is homogeneous.
. We substitute y = vx (where v is a function of x)
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The equation now becomes:
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Now you can separate the variables and get the result in terms of v and x.
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All that remains now is to express v back in terms of x and y. The substitution

we used was y = vx ', v=£

2
% (f;') ~Inx+C
Y =2x*(Inx+C)

Now, what about this one?

Example 3:
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y = vx, where v is a function of x

Right, That is the key to the whole process.
dy
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So express each side of the equation in terms of v and x:
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Now take the single v over to the RHS and simplify, giving:
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Now you can separate the variables, giving ............
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Integrating both sides, we can now obtain the solution in terms of v and x.
What do you get?

Infv4+v)=Inx4+C=Inx+InA
S v+ =Ax

We have almost finished the solution. All that remains is to express v back in

terms of x and y, y
Remember the substitution was y = vx, so that v = -

So finish it off.
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Because
v+t =Axandv =" sl ax
X X X*
Xy +}*2 : Ax?
And that is all there is to it.
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Linear equation —by using integration factor:
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dy :
Consider the equation d—“ LSy =¢"

This is clearly an equation of the first order, but different from those we have
dealt with so far. In fact, none of our previous methods could be used to solve
this one, so we have to find a further method of attack.
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dy/dx + py =Q

p and Q are function of x
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So, [ pdx = 5x

So, I.F= ™
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So,
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Integrate both side with respect to x
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Example 2:

To solve Ci}—J—y=x

dx
If we compare this with g—; + Py = Q, we see that in this case
P=—-land Q =x.

The integrating factor is always el P& and here P = 1.

% Jde = —x and the integrating factor is therefore ...........

So, the I.F= el pdx
I.F= ™




We therefore multiply both sides by e~".
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The RHS integral can now be determined by integrating by parts:
yet = x(—e"") 4 Je ‘dx = ~xe™" - +C
Soy==x=14Ce" . y=Ce¢'-x-1

The whole method really depends on:
(a) being able to find the integrating factor
(b) being able to deal with the integral that emerges on the RHS.
Let us consider the general case.
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yIF = Jq.[Fdx '

IF= INTEGRATION FACTOR
EXAMPLE 3:




Solve xdy+y.—.x‘

dx
First we divide through by x to reduce the first term to a single :—i
., D
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Compare with [:—54}’)'=Q] Ps::- and Q = ¥°
IF = e/ lP&el%d.t:lnx
S IF=é™=x ‘' IF=2x
The solution is  y.IF = IQ.lex
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