ALMUSTAQBAL UNIVERSITY COLLEGE Iraq - Babylon

RENEWABLE ENERGY TECHNOLOGY
 Sustainable Path For a Carbon Free Future

Refrigeration and Air conditioning Techniques Engineering Department

Subject : Renewable Energy Grade: $4^{\text {th }}$ Class

Lecture : 3

Dr. Eng. Azher M.Abed
E-email : azhermuhson@gmail.com

- October 2019

Contents

- 1- INTRODUCTION
- 2- SOLAR RADIATION ANALYSIS
- 2.1 The Main Parameters of the Sun
- 2.2 Basic Earth Sun Angles
- 2.3 Determination of Solar Time

Sun - Earth Relationships

93 million miles, average $\left(1.5 \times 10^{8} \mathrm{~km}\right)$
1 Astronomical Unit
(Distance traveled in 8.31 minutes at the Speed of Light)

Sun:

Diameter: $\mathbf{8 6 5 , 0 0 0}$ miles ($1,392,000 \mathrm{~km}, 109$ times earth)
Mass: $\mathbf{2 \times 1 0 ^ { 3 0 }} \mathrm{kg}$ (330,000 times earth)
Density: $1.41 \mathrm{~g} / \mathrm{cm}^{3}$
Gravity: 274 m/s ${ }^{2}(28 \mathrm{~g})$
Surface Temperature: $\mathbf{1 0 , 0 0 0} \mathbf{F}(5800 \mathrm{~K})$

Earth:
Diameter: $\mathbf{7 , 9 3 0}$ miles ($12,756 \mathrm{~km}$)
Mass: $5.97 \times 10^{24} \mathrm{~kg}$
Density: $5.52 \mathrm{~kg} / \mathrm{cm}^{3}$
Gravity: 9.81 m/s ${ }^{2}$ (1 g)
Typical Surface Temperature: 68 F ($\mathbf{3 0 0 K}$)
Earth's Orbit Around Sun: 1 year
Earth's Rotation about its Polar Axis: 1 day

2- Solar Radiation Analysis

2.1 The Main Parameters of the Sun

The separation angle for mean distance between the earth and the sun:

$$
\theta=\frac{2 r_{\theta}}{r}
$$

The perihelion and aphelion are the nearest and farthest points (apsides) of a body's direct orbit around the Sun.

Distance between the sun and earth

2- Solar Radiation Analysis

The erath's orbit around the sun

$$
\mathrm{r}=\frac{a\left(1-\epsilon^{2}\right)}{1+\epsilon \cos \theta}
$$

a : average orbit distance $=1.5^{*} 10^{\wedge} 8 \mathrm{~km}$;
$\epsilon:$ Eccentricity= 0.01673
θ : is equal to the No. of the day at year and can by calculate accordant to table 1:

Fig. 2.1 Distance between the sun anc

Eccentricity: deviation of a curve or orbit from circularity the earth

The apparent solar radiation values

$$
\left.I_{0}=I_{S C} \left\lvert\, 1+0.033 \cos \left(\frac{N}{365} \times 360^{\circ}\right)\right.\right]
$$

Solar Emission Spectrum

total power of solar emission by :
Po=As* Fo

The solar constant $I s c$ is the energy from the sun per unit time received on a unit area of surface perpendicular to the direction of propagation of the radiation at mean earth-sun distance outside the atmosphere.

$$
\mathrm{Isc}=\frac{P o}{4 \pi r^{2}}=\frac{A s * F o}{4 \pi r^{2}}=\frac{\sigma^{*} T^{4} * 4 \pi r_{\theta^{2}}}{4 \pi r^{2}}
$$

2.2 Basic Earth Sun Angles

φ Latitude is the angle measured at the centre of the Earth, between the Equator plane and where you are. It is expressed either north or south, and varies .; $-90 \leq \varphi$ ≤ 90.
δ Declination; is the angle made between the plane of the equator and the line joining the two centers of the earth and the sun: -23.45 . δ
≤ 23.45.
The position of a point P on the earth's surface with respect on the sun's rays is known at any instant if the latitude (ϕ) and hour angle (ω) for the point, and the sun's declination (δ) are known.

2.2 Basic Earth Sun Angles

Variation of the hour angle

As shown in Figure, the hour angle is the angular distance between the meridian of the observer and the meridian whose plane contains the sun.

2.2 Basic Earth Sun Angles

2.2 Basic Earth Sun Angles

2.2 Basic Earth Sun Angles

Since the Earth rotates at $360 \circ / 24 \mathrm{~h}=15 \circ \mathrm{~h}-1$, the hour angle is given by

$$
\begin{align*}
\omega & =\left(15^{\circ} \mathrm{h}^{-1}\right)\left(t_{\text {solar }}-12 \mathrm{~h}\right) \tag{3.3}\\
& =\left(15^{\circ} \mathrm{h}^{-1}\right)\left(t_{\text {zone }}-12 \mathrm{~h}\right)+\omega_{\text {eq }}-
\end{align*}
$$

where tsolar and tzone are respectively the local solar and civil times (measured in hours), zone is the longitude where the Sun is overhead when tzone is noon (i.e. where solar time and civil time coincide). ω is positive in the evening and negative in the morning. The small correction term $\omega_{\text {eq }}$ is called the equation of time; it never exceeds 15 min and can be neglected for most purposes

2.2 Basic Earth Sun Angles

21 March

21 June

2I Sept.

21 Dec.

The Tropic of Cancer and Tropic of Capricorn are located at
$+23.45^{\circ}$ and -23.45°, respectively
δ varies smoothly from $+\delta_{0}=+23.45^{\circ}$ at midsummer in the northern hemisphere, to $-\delta_{0}=-23.45^{\circ}$ at northern midwinter. Analytically,

$$
\begin{equation*}
\delta=23.45^{\circ} \sin \left[\frac{360}{365}(284+n)\right] \tag{3.4}
\end{equation*}
$$

n : is the day of the year; $1 \leq n \leq 365$

2.2 Basic Earth Sun Angles

The longitudes are described in terms of how many degrees they lie to the east or west of the prime meridian

2.2 Basic Earth Sun Angles

Table (1) : Day number and recommended average day for each month

Month	Day number	Average day of the month	
		Date	N
January	i	17	17
February	$31+i$	16	47
March	$59+i$	16	75
April	$90+i$	15	105
May	$120+i$	15	135
June	$151+i$	11	162
July	$181+i$	17	198
August	$212+i$	16	228
September	$243+i$	15	258
October	$273+i$	15	288
November	$304+i$	14	318
December	$334+i$	10	344

2.3 Determination of Solar Time

Greenwich meridian (zero longitude) is taken as reference for the time and time reckoned from mid night is known as universal time or Greenwich civil time (GCT or GMT). Such time is expressed on an hour scale from 0 n to 24 h .

The solar time

Solar Time : Time based on the apparent angular motion of the sun across the sky with solar noon the time the sun crosses the meridian of the observer

$$
\begin{equation*}
\text { Solar time }- \text { standard time }=4\left(L_{\text {st }}-L_{\text {loc }}\right)+E \tag{3.2}
\end{equation*}
$$

where Lst is the standard meridian for the local time zone, Lloc is the longitude of the location in question, and longitudes are in degrees west, that is, $0 \ll L<360$ 。
where E is the equation of the time and can express by :
الوقت الذي
يقاس من قبل
الحركة اليومية

الظاهرة من
الشمس

$$
\begin{aligned}
E=229.2(& 0.000075+0.001868 \mid \cos B-0.032077 \sin B \\
& -0.014615 \cos 2 B-0.04089 \sin 2 B)
\end{aligned}
$$

where B is

$$
\underline{B}=\frac{\mathbf{3 6 0}}{\mathbf{3 6 4}}(n-81) \quad n: \text { is the day of the year }
$$

The solar time

Example 1

At Madison, Wisconsin, what is the solar time corresponding to 10:30 am central time
on February 3?

Solution

In Madison, where the longitude is 89.4° and the standard meridian is 90°,

$$
\begin{aligned}
& \text { Solar time }=\text { standard time }+4(90-89.4)+E \\
& =\text { standard time }+2.4+E
\end{aligned}
$$

On February 3, $n=34$, and from Equation 3.2, $E=-13.5 \mathrm{~min}$, so the correction to standard time is -11 min. Thus 10:30 am Central Standard Time is 10:19 am solar time.

The solar time

Example 2

Find Eastern daylight Time for solar noon in Boston (Longitude $71.1^{\circ} \mathrm{w}$) on July 1st?

Solution

July $1^{\text {st }}$, is day number $\mathrm{n}=182$ to adjust for local time, we obtain :

$$
B=360 / 364(182-81) 99.89^{\circ}
$$

$E=229.2(0.000075+0.001868 \cos (99.89)-0.032077 \sin (99.89)-0.014615$ $\left.\cos \left(2^{*} 99.89\right)-0.04089 \sin \right)=-3.5$

For Boston at longitude $71.7^{\circ} \mathrm{w}$ in the Eastern Time Zone with time maridian 75°.

$$
\text { Solar time - standard time }=4\left(L_{\text {st }}-L_{\text {loc }}\right)+E
$$

To adjust for daylight savings time add 1 h , so solar noon will be about $12.48 \mathrm{p} . \mathrm{m}$
$12-$ standard time $=4\left(75-71.1^{\circ}\right)+(-3.5)=12: 00-12.1 \mathrm{~min}=11: 47.9$ A.M East

References

1- J. Twidell. and T. Weir " Renewable Energy Resources " Taylor and Francis Group, 2006.
2- J. A. Duffie and W. A. Beckman" Solar Engineering of Thermal Processes" John Wiley \& Sons, Inc., Hoboken, New Jersey, 2013.

Solar Direct - Solutions that make life green!

