

Ministry of Higher Education and Scientific Research Al-Mustaqbal University College
Department of Chemical Engineering and petroleum Industrials

Week: 1,2,3

Mathematics II

$$
2^{\text {nd }} \text { Stage }
$$

Lecturer:Sara I. Mohammed

1. Double integral

The definite integral can be extended to functions of more than one variable. Consider, for example, a function of two variables $\mathrm{z}=\mathrm{f}$ (x, y).The double integral of function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ is denoted by

$$
\iint_{R} F(x, y) d A
$$

Figure 1

Where R is the region of integration in the xy-plane.

The definite integral $\int_{a}^{b} f(x) d x$ of a function of one variable $\mathrm{f}(\mathrm{x}) \geq 0$ is the area under the curve $f(x)$ from $x=a$ to $x=b$, then the double integral is equal to the volume under the surface $\mathrm{z}=\mathrm{f}(\mathrm{x}, \mathrm{y})$ and above the xy -plane in the region of integration R (Figure 1).

a- Properties of double integral

If $f(x, y)$ and $g(x, y)$ are continuous on the bounded region R, then the following properties hold.

1. Constant Multiple: $\iint_{R} c f(x, y) d A=c \iint_{R} f(x, y) d A \quad$ (any number c)
2. Sum and Difference:

$$
\iint_{R}(f(x, y) \pm g(x, y)) d A=\iint_{R} f(x, y) d A \pm \iint_{R} g(x, y) d A
$$

3. Domination:
(a) $\iint_{R} f(x, y) d A \geq 0 \quad$ if $\quad f(x, y) \geq 0$ on R
(b) $\iint_{R} f(x, y) d A \geq \iint_{R} g(x, y) d A \quad$ if $\quad f(x, y) \geq g(x, y)$ on R
4. Additivity: $\iint_{R} f(x, y) d A=\iint_{R_{1}} f(x, y) d A+\iint_{R_{2}} f(x, y) d A$ if R is the union of two nonoverlapping regions R_{1} and R_{2}

b- Cartesian form

Double integral of $f(x, y)$ over the region R is denoted by:

$$
\begin{gathered}
\iint_{R} F(x, y) d A=\iint_{R} F(x, y) d x d y=\int_{c}^{d} \int_{x 1}^{x 2} F(x, y) d x d y \\
\text { or }
\end{gathered}
$$

$$
\iint_{R} F(x, y) d A=\iint_{R} F(x, y) d y d x=\int_{a}^{b} \int_{y 1}^{y 2} F(x, y) d y d x
$$

(a)
(b)

Figure 2

c- Finding Limits of Integration in cartesian form

- Using Vertical Cross-Sections

When faced with evaluating $\iint_{R} f(x, y) d A$, integrating first with respect to y and then with respect to x, do the following three steps:

1- Sketch. Sketch the region of integration and label the bounding curves.(Figure 3 a).
2- Find the y-limits of integration. Imagine a vertical line L cutting through R in the direction of increasing y. Mark the y-values where Lenters and leaves. These are the y-limits of integration and are usually functions of x (instead of constants)(Figure 3 b).

3- Find the x-limits of integration. Choose x-limits that include all the vertical lines through R. The integral shown here (see Figure 3 c) is

$$
\iint_{R} f(x, y) d A=\int_{x=0}^{x=1} \int_{y=1-x}^{y=\sqrt{1-x^{2}}} f(x, y) d y d x .
$$

Figure 3

- Using Horizontal Cross-Sections

To evaluate the same double integral as an iteratedintegral with the order of integration reversed, use horizontal lines instead of vertical linesin Steps 2 and 3(see Figure 4). The integral is

$$
\iint_{R} f(x, y) d A=\int_{0}^{1} \int_{1-y}^{\sqrt{1-y^{2}}} f(x, y) d x d y .
$$

Figure 4
d- Polar form

$$
\begin{gathered}
\iint_{R} F(r, \theta) d A=\int_{r_{1}}^{r_{2}} \int_{\theta_{1}=g_{1}(r)}^{\theta_{2}=g_{2}(r)} F(r, \theta) r d \theta d r \\
\text { or } \\
\iint_{R} F(r, \theta) d A=\int_{\theta_{1}}^{\theta_{2}} \int_{r_{1}=g_{1}(\theta)}^{r_{2}=g_{2}(\theta)} F(r, \theta) r d r d \theta
\end{gathered}
$$

Figure 5

e- Finding Limits of Integration in polar form

The procedure for finding limits of integration in rectangular coordinates also works for polar coordinates. To evaluate $\iint_{R} f(r, \theta)^{-} d A$ over a region R in polar coordinates, integrating first with respect to r and then with respect to θ, take the following steps.

1- Sketch. Sketch the region and label the bounding curves.
2- Find the r-limits of integration. Imagine a ray L from the origin cutting through R in thedirection of increasing r. Mark the r-values where L enters and leaves R. These are ther-limits of integration. They usually depend on the angle u that L makes with the positive x-axis.

3- Find the θ-limits of integration. Find the smallest and largest θ-values that bound R.These are the θ-limits of integration (see figure 6). The polar iterated integral is

$$
\iint_{R} f(r, \theta) d A=\int_{\theta=\pi / 4}^{\theta=\pi / 2} \int_{r=\sqrt{2} \csc \theta}^{r=2} f(r, \theta) r d r d \theta .
$$

$\int_{-\pi / 2}^{\pi / 2} \int_{1}^{1+\cos \theta} f(r, \theta) r d r d \theta$

Figure 6

f - Change of variables

Let $x=x(u, v), y=y(u, v)$ then the formula for a change of variables in double integrals from x, y to u, v is

$$
\iint_{R} F(x, y) d y d x=\iint_{R} F(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

that is, the integrand is expressed in terms of u and v, and $d x$, dy is replaced by du dv times
the absolute value of the Jacobian.

$$
j=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
$$

For double integral transformation from the cartesian coordinates to polar coordinates ordinates as follows:

$$
\text { Since } \quad x=r \cos \theta, y=r \sin \theta
$$

using the Jacobian matrix, we find that

$$
j=\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left((\cos \theta)^{2}+(\sin \theta)^{2}\right)=r
$$

Then

$$
\int_{x 1}^{x 2} \int_{y 1}^{y 2} F(x, y) d y d x=\int_{r 1}^{r 2} \int_{\theta 1}^{\theta 2} F(r, \theta) r d r d \theta
$$

