# BIOPHARMACEUTICALS LAB 1

# Kinetic orders

- In pharmacokinetics, the overall rate of drug absorption may be described as either a first-order or a zero order input process.
- Most pharmacokinetic models assume first-order absorption unless an assumption of zero-order absorption improves the model significantly or has been verified experimentally.



## First order kinetic

- Here is a constant proportion (eg. A percentage) of drug is eliminated per unit time
- It is a concentrationdependent process (i.e. the higher the concentration, the faster the clearance).



## First order kinetic plot





## Zero order kinetic

- Here is a constant amount (eg. so many milligrams) of drug is eliminated per unit time
- Zero order elimination rate is independent of concentration.



#### First vs zero Order



FIGURE 1-3 Comparison of first-order and zero-order elimination. For drugs with first-order kinetics (left), rate of elimination (units per hour) is proportional to concentration; this is the more common process. In the case of zero-order elimination (right), the rate is constant and independent of concentration.

#### Concentration vs time curve



**FIGURE 8-4** Plasma level-time curve for a drug given in a single oral dose. The drug absorption and elimination phases of the curve are shown.

## Concentration vs time curve

| time | conc |
|------|------|
| 0    | 100  |
| 4    | 50   |
| 8    | 25   |
| 12   | 12.5 |
| 16   | 6.25 |
| 20   | 3.13 |
| 24   | 1.56 |



#### Log concentration vs time curve



# Calculation of ke from curve

- K e= 2.303\* slope
  slope= (c<sub>2</sub>-c<sub>1</sub>)/(t<sub>2</sub>-t<sub>1</sub>)

for example Ke at 16 hr:

slope = (6.25 - 12.5)/16 - 12)



=-1.56 mg/ml/hr

So ke =-2.303\*-1.56 = 3.59 mg/ml/hr

## Homework

Following table represents series plasma conc. of drug X over 12 hr period.

- 1. Plot the conc- time curve
- 2. What is the order of kinetic?
- 3. What is the value of Ke at the end of period?

| time | drug  |
|------|-------|
| (hr) | conc. |
| 0    | 100   |
| 2    | 95    |
| 4    | 90    |
| 6    | 85    |
| 8    | 80    |
| 10   | 75    |
| 12   | 70    |



