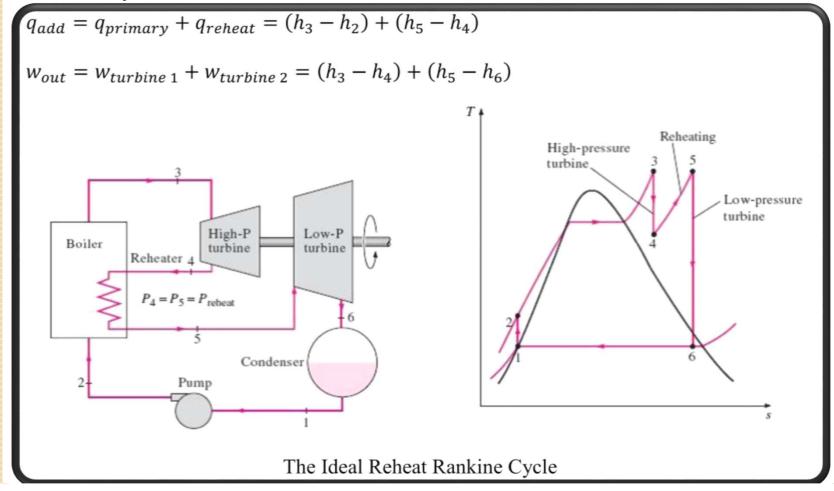


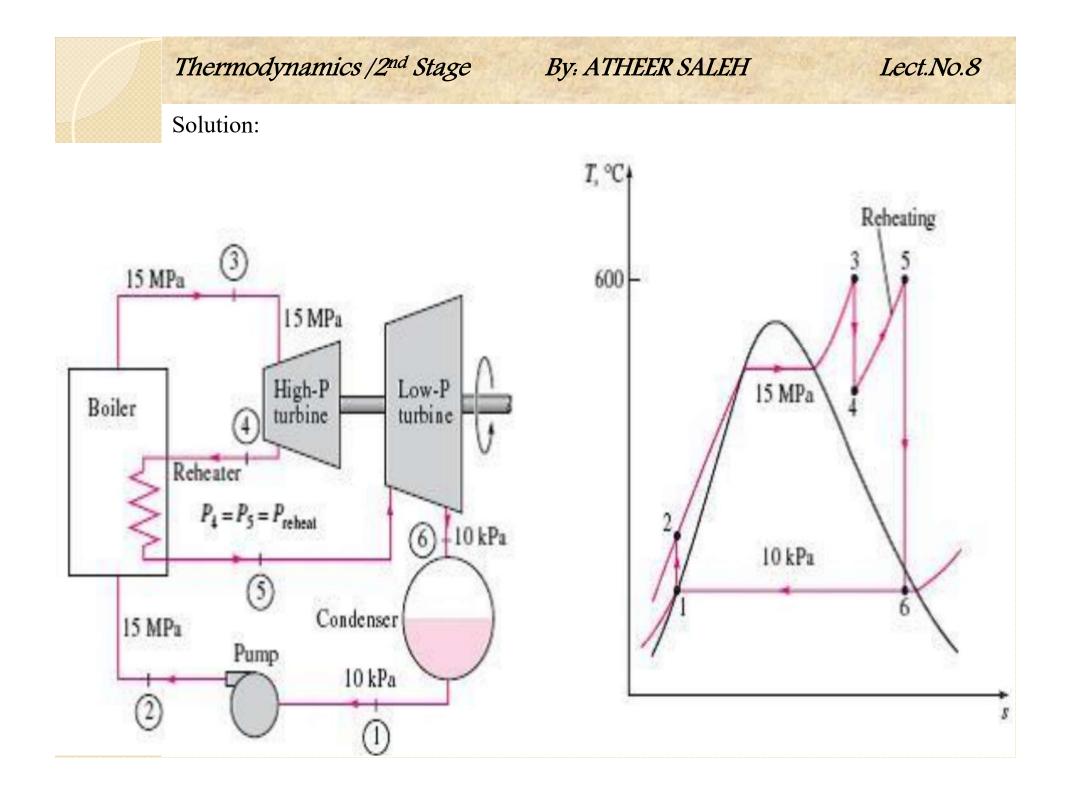
Department of Air Conditioning and Refrigeration Engineering Technology

Class: 2nd Subject:Thermodynamics Assistant. Lecturer: Atheer Saleh E-mail: <u>AtheerSaleh@mustaqbal-</u> <u>college.edu.iq</u>


The Ideal Reheat Rankine Cycle

Increasing the boiler pressure increases the thermal efficiency of the Rankine cycle, but it also increases the moisture content of the steam to unacceptable levels. Therefore, the desirable approach is expanding the steam in the turbine in two stages, and reheats it in between. In other words, modify the simple ideal Rankine cycle with a reheat process. Reheating is a practical solution to the excessive moisture problem in turbines, and it is commonly used in modern steam power plants

Thermodynamics / 2nd Stage By: ATHEER SALEH


Lect.No.8

The figure below explains the (T-S) diagram of the ideal reheat Rankine cycle and the schematic of the power plant operating on this cycle.

Example (5.4) Consider a steam power plant operating on the ideal reheat Rankine cycle. Steam enters the high-pressure turbine at 15 MPa and 600°C and is condensed in the condenser at a pressure of 10 kPa. If the moisture content of the steam at the exit of the low-pressure turbine is not to exceed 10.4%, determine:

(a) the pressure at which the steam should be reheated(b) the thermal efficiency of the cycle. Assume the steam is reheated to the inlet temperature of the high-pressure turbine.

Thermodynamics /2nd Stage B

By: ATHEER SALEH

Lect.No.8

a) State 6 at : $P_6 = 10$ kPa And $x_6 = 0.896$

 $s_6 = s_f + x_6 s_{fg} = 0.6492 + 0.896 \times (7.34996) = 7.3688$ kJ/kg. K $h_6 = h_f + x_6 h_{fg} = 191.8 + 0.896 \times (2392.1) = 2335.1$ kJ/kg

TABLE A-5

Saturated water—Pressure table

	Sat. temp., <i>T_{sat} °</i> C	<i>Specific volume,</i> m ³ /kg		Internal energy, kJ/kg			Enthalpy, kJ/kg			Entropy, kJ/kg · К		
Press., <i>P</i> kPa		Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., <i>u_{fg}</i>	Sat. vapor, <i>u_g</i>	Sat. liquid, <i>h_f</i>	Evap., h _{fg}	Sat. vapor, <i>h_g</i>	Sat. liquid, <i>s_f</i>	Evap., s _{fg}	Sat. vapor, <i>s_g</i>
1.0	6.97	0.001000	129.19	29.302	2355.2	2384.5	29.303	2484.4	2513.7	0.1059	8.8690	8.9749
1.5	13.02	0.001001	87.964	54.686	2338.1	2392.8	54.688	2470.1	2524.7	0.1956	8.6314	8.8270
2.0	17.50	0.001001	66.990	73.431	2325.5	2398.9	73.433	2459.5	2532.9	0.2606	8.4621	8.7227
2.5	21.08	0.001002	54.242	88.422	2315.4	2403.8	88.424	2451.0	2539.4	0.3118	8.3302	8.6421
3.0	24.08	0.001003	45.654	100.98	2306.9	2407.9	100.98	2443.9	2544.8	0.3543	8.2222	8.5765
4.0	28.96	0.001004	34.791	121.39	2293.1	2414.5	121.39	2432.3	2553.7	0.4224	8.0510	8.4734
5.0	32.87	0.001005	28.185	137.75	2282.1	2419.8	137.75	2423.0	2560.7	0.4762	7.9176	8.3938
7.5	40.29	0.001008	19.233	168.74	2261.1	2429.8	168.75	2405.3	2574.0	0.5763	7.6738	8.2501
10	45.81	0.001010	14.670	191.79	2245.4	2437.2	191.81	2392.1	2583.9	0.6492	7.4996	8.1488
15	53.97	0.001014	10.020	225.93	2222.1	2448.0	225.94	2372.3	2598.3	0.7549	7.2522	8.0071

By: ATHEER SALEH

Lect.No.8

a) State 6 at : $P_6 = 10$ kPa And $x_6 = 0.896$

 $s_6 = s_f + x_6 s_{fg} = 0.6492 + 0.896 \times (7.34996) = 7.3688$ kJ/kg. K $h_6 = h_f + x_6 h_{fg} = 191.8 + 0.896 \times (2392.1) = 2335.1$ kJ/kg

		Specific	volume	Internal energy			Enthalpy			Entropy		
	Sat.	m^3/kg		kJ/kg			kJ/kg			kJ/(kg.K)		
Press.	Temp.	Sat.	Sat.	Sat.		Sat.	Sat.		Sat.	Sat.		Sat.
<u>MPa</u>	°C	liquid	vapour	liquid	Evap.	vapour	liquid	Evap.	vapour	liquid	Evap.	vapour
Р	T _{sat}	V _f	Vg	u _f	u_{fg}	u_g	h_{f}	h_{fg}	h_g	s _f	s _{fg}	s_g
<mark>0.100</mark>	99.63	0.001043	1.6940	417.36	2088.7	2506.1	417.46	2258.0	2675.5	<mark>1.3026</mark>	<mark>6.0568</mark>	7.3594
0.125	105.99	0.001048	1.3749	444.19	2069.3	2513.5	444.32	2241.0	2685.4	1.3740	5.9104	7.2844
0.150	111.37	0.001053	1.1593	466.94	2052.7	2519.7	467.11	2226.5	2693.6	1.4336	5.7897	7.2233
0.175	116.06	0.001057	1.0036	486.80	2038.1	2524.9	486.99	2213.6	2700.6	1.4849	5.6868	7.1717
0.200	120.23	0.001061	0.8857	504.49	2025.0	2529.5	504.70	2201.9	2706.7	1.5301	5.5970	7.1271
0.225	124.00	0.001064	0.7933	520.47	2013.1	2533.6	520.72	2191.3	2712.1	1.5706	5.5173	7.0878
0.250	127.44	0.001067	0.7187	535.10	2002.1	2537.2	535.37	2181.5	2716.9	1.6072	5.4455	7.0527

 Table 3
 Saturated steam (pressure) table

By: ATHEER SALEH

Lect.No.8

Thus, $T_5 = 600^{\circ}$ C and $s_5 = s_6 = 7.3688$ kJ/kg.K

TABLE A-6

Т	V	и	h	S	V	и	h	S	V	и	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg \cdot K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg \cdot K
	P	= 4.0 MF	Pa (250.35	5°C)	Р	= 4.5 MP	a (257.44	°C)	P = 5.0 MPa (263.94°C)			
Sat.	0.04978	2601.7	2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0	2794.2	5.9737
275	0.05461	2668.9	2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3	2839.5	6.0571
300	0.05887	2726.2	2961.7	6.3639	0.05138	2713.0	2944.2	6.2854	0.04535	2699.0	2925.7	6.2111
350	0.06647	2827.4	3093.3	6.5843	0.05842	2818.6	3081.5	6.5153	0.05197	2809.5	3069.3	6.4516
400	0.07343	2920.8	3214.5	6.7714	0.06477	2914.2	3205.7	6.7071	0.05784	2907.5	3196.7	6.6483
450	0.08004	3011.0	3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6	3317.2	6.8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8	3434.7	6.9781
600	0.09886	3279.4	<mark>3674.9</mark>	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3	3666.9	7.2605
700	0.11098	3462.4	3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7	3900.3	7.5136
800	0.12292	3650.6	4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9	4137.7	7.7458
900	0.13476	3844.8	4383.9	8.0675	0.11972	3843.3	4382.1	8.0118	0.10769	3841.8	4380.2	7.9619
1000	0.14653	4045.1	4631.2	8.2698	0.13020	4043.9	4629.8	8.2144	0.11715	4042.6	4628.3	8.1648
1100	0.15824	4251.4	4884.4	8.4612	0.14064	4250.4	4883.2	8.4060	0.12655	4249.3	4882.1	8.3566
1200	0.16992	4463.5	5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.13592	4461.6	5141.3	8.5388
1300	0.18157	4680.9	5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3	5405.7	8.7124

And $P_5 = 4$ MPa and $h_5 = 3674.9$ kJ/kg

Lect.No.8

So the steam should be reheated at a pressure of 4 MPa to prevent a moisture content greater than 10.4%.

b) The thermal efficiency is calculated as follows:

State 1: at $P_1 = 10$ kPa

 $h_1 = h_f = 191.81 \text{ kJ/kg}$ and $v_1 = v_f = 0.00101 \text{ m}^3/\text{kg}$

State 2: at $P_2 = 15$ MPa and $s_2 = s_1$

 $w_{pump} = v_1(P_2 - P_1) = 0.00101 \times (15 \times 10^3 - 10) = 15.14 \text{ kJ/kg}$

 $w_{pump} = h_2 - h_1 \rightarrow h_2 = 191.81 + 15.14 = 206.96 \text{ kJ/kg}$

Thermodynamics /2nd Stage By: ATHEER SALEH

State 3: at $P_3 = 15$ MPa and $T_3 = 600^{\circ}$ C

From superheated steam tables: $h_3 = 3583.1 \text{ kJ/kg}$ and $s_3 = 6.6796 \text{ kJ/kg}$. K

Lect.No.8

State 4: at $P_4 = 4$ MPa and $s_3 = s_4$

From superheated steam tables: $h_4 = 3155 \text{ kJ/kg}$ and $T_4 = 375.5^{\circ}\text{C}$

$$q_{in} = (h_3 - h_2) + (h_5 - h_4)$$

$$q_{in} = (3583.1 - 206.95) + (3674.9 - 3155.0) = 3896.1 \text{ kJ/kg}$$

$$q_{out} = h_6 - h_1 = 2335.1 - 191.8 = 2143.3 \text{ kJ/kg}$$

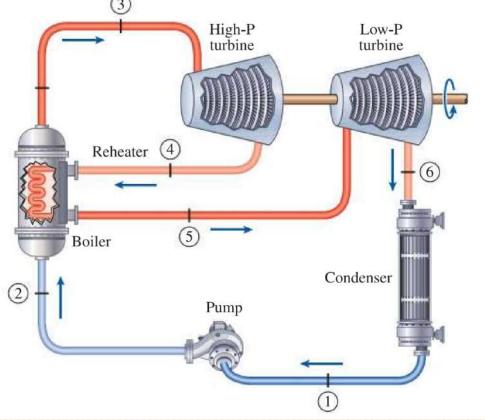
$$\eta_{th} = 1 - \frac{q_{out}}{q_{in}} = 1 - \frac{2143.3}{3896.1}$$

$$\eta_{th} = 45\%$$
Ans.

By: ATHEER SALEH

Exercises

Problem (5.1): Consider a steam power plant that operates on a simple ideal Rankine cycle and has a net power output of 45 MW. Steam enters the turbine at 7 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa by running cooling water from a lake through the tubes of the condenser. Show the cycle on a (*T-S*) diagram with respect to the saturation lines, and determine (a) the thermal efficiency of the cycle (b) the mass flow rate of the steam.


Ans. (38.9%, 36 kg/s)

Problem (5.2): A steam power plant operates on the reheat Rankine cycle. Steam enters the high-pressure turbine at 12.5 MPa and 550°C at a rate of 7.7 kg/s and leaves at 2 MPa. Steam is then reheated at constant pressure to 450°C before it expands in the low-pressure turbine. The isentropic efficiencies of the turbine and the pump are 85 percent and 90 percent, respectively. Steam leaves the condenser as a saturated liquid. If the moisture content of the steam at the exit of the turbine is not to exceed 5 percent, determine (a) the condenser pressure (b) the net power output (c) the thermal efficiency.

Ans. (9.73 kPa, 10.2 MW, 36.9%)

Thermodynamics /2nd Stage By: ATHEER SALEH

problem 5.3 Consider a steam power plant that operates on the ideal reheat Rankine cycle. The plant maintains the boiler at 5000 kPa, the reheat section at 1200 kPa, and the condenser at 20 kPa. The mixture quality at the exit of both turbines is 96 percent. Determine the temperature at the inlet of each turbine and the cycle's thermal efficiency. *Answers:* 327°C, 481°C, 35.0 percent

Lect.No.8

Lect.No.8

Problem (5.4) Consider a reheat cycle utilizing steam. Steam leaves the boiler and enters the turbine at 4 MPa, 400 °C. After expansion in the turbine to 400 kPa, the steam is reheated to 400 °C and then expanded in the low pressure turbine to 10 kPa. Determine the cycle efficiency. Ans: 35.9%

Problem (5.5) Superheated water vapor enters the turbine at 5Mpa and 400 °C. The water leaves the condenser as saturated liquid at a pressure of 30kPa, and the turbine efficiency is 91%. The net power output of the cycle is 100MW. Determine:

a- The thermal efficiency,

b- Mass flow rate of steam in the cycle

Ans : 29% ; 115.7 kg/sec