Lab. 2

AUC CALCULATION- ORAL

What is AUC?

- Area under the conc. curve (AUC) is a measure of the total systemic exposure of a drug
- AUC can be calculated from concentration-time data
- It is primary pharmacokinetic parameter as it is can be obtained only from plasma data.

Area Under Plasma Concentration-Time Curve:

Linear Plot of Cp versus Time showing AUC and AUC segment

IMPORTANCE of AUC

* Toxicology : Measure of drug exposure
- Biopharmaceutics : Comparison of drug products in BA/BE studies

Pharmacokinetics : Measure of Pharmacokinetic parameters e.g. Clearance, BA.

IMPORTANCE of AUC

Calculation of AUC

Cut And Weigh Method

* Plot the plasma profile vs time on graph paper
* Cut the curve drawn carefully
* Require an analytical balance
* The weight of this cut portion is W1
* Weight of whole graph paper is W2
* Area of whole paper = AUC2

Cut And Weigh Method

* Area= length X width
* AUC1/W1 = AUC2/W2
* For example if:
\checkmark AUC2 $=200 \mathrm{mg} . \mathrm{hr} / \mathrm{ml}$
$\checkmark \quad W 1=800 \mathrm{mg}$
$\checkmark \quad W 2=3000 \mathrm{mg}$
* Then:
\checkmark AUC1 $=[(200)(800) / 3000]=$ $53.33 \mathrm{mg} . \mathrm{hr} / \mathrm{ml}$
* Units Y axis $\mathrm{mg} / \mathrm{ml}$ and X axis is Hours so area is $\mathrm{mg} . \mathrm{Hr} / \mathrm{ml}$

Trapezoidal rule

Trapezoid	
Is four sided figure with two parallel sides	
Steps	
\checkmark	Dividing whole AUC into trapezoidal
	segments
\checkmark	Counting the area of each segments
	separately
\checkmark	Summation of all the area to get the
	Total area

Types of AUC

Trapezoidal rule

- We can calculate the AUC of each segment if we consider the segments to be trapezoids

$$
A \cup C 2-3=\frac{C_{p} 2+C_{p} 3}{2} x \quad(t 3-t 2)
$$

Calculation of first \& last Segment

- The first segment can be calculated after determining the zero plasma concentration CpO by extrapolation, while Final segment can be calculated from t last to t infinity.

$$
\mathrm{AUCO}-1=\frac{\mathrm{Cpo}+\mathrm{Cp} 1}{2} \times \mathrm{t} 1
$$

$$
\mathrm{AUC}_{\mathrm{t}_{\text {lest }}-\infty}=\int_{\mathrm{t}=\mathrm{t}_{\text {lest }}}^{\mathrm{t}=\infty} \mathrm{C} p \cdot \mathrm{dt}=\frac{\mathrm{C} p_{\text {last }}}{\mathrm{kel}}
$$

Total AUC

Total AUC

$$
\begin{aligned}
\mathrm{AUC}_{0-\infty}= & \mathrm{AUC}_{0-1}+\mathrm{AUC}_{1-\text { last }}+\mathrm{AUC}_{\text {last }-\infty} \\
= & \frac{C p_{0}+C p_{1}}{2} \bullet \mathrm{t}_{1}+\frac{C p_{1}+C p_{2}}{2} \bullet\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) \\
& +\frac{C p_{2}+C p_{3}}{2} \cdot\left(\mathrm{t}_{3}-\mathrm{t}_{2}\right)+\ldots+\frac{C p_{\text {last }}}{\mathrm{kel}}
\end{aligned}
$$

