

Calibration curve definition

✓ Calibration curve:

- It is the curve prepared from a series of standard solution
- It used as a reference curve to obtain the concentration of unknown sample of the same drug
- X axis s the conc of sample
- Y axis is the absorbance

Stock solution

✓ Stock solution:

0

Solution of known and high conc from which we prepare standard solution

Standard solution

✓ Standard solution:

0

Solution of known conc · Prepared from stock solution using dilution equation:

$$C_1 \cdot v_1 = C_2 \cdot v_2$$

Blank solution

✓ Blank solution:

0

Its the solution which contain all the constituents of the sample except the active ingredient which is required to be measured

Spectrophotometry

 It is a method to measure how much a chemical substance absorbs light

- The basic principle is that each compound absorbs or transmits light over a certain range of wavelength.
- In our work usually the analysis concerned with the absorbed amount of light

Spectrophotometry

0 Spectrophotometry Depending on the range of wavelength of light source, it can be classified into two different types: 1.UV-visible spectrophotometer: uses light over the ultraviolet range (185 - 400 nm) and visible range (400 - 700 nm) of electromagnetic radiation spectrum. 2.1R spectrophotometer: uses light over the infrared range (700 - 15000 nm) of electromagnetic radiation spectrum.

Methods to obtain the unknown conc. **1. Curve fitting method:**

0

Methods to obtain the unknown conc. 2. Least square fitting method:

2. Least square fitting method: This method is based on the equation which minimizes the sum of the squares of deviation of the observed values from line.

 $\sum (y - \bar{y})^2$

Where: y = observed value $\bar{y} = calculated$ value

Methods to obtain the unknown conc. 2. Least square fitting method:

X conc(mg/ml)	Y (abs.)	X ²	X*Y
X1	Y1	X1 ²	X1*Y1
X2	Y2	X2 ²	X2*Y2
X3	Y3	X3 ²	X3*Y3
X4	Y4	X4 ²	X4*Y4
X5	Y5	X5 ²	X5*Y5
Σχ	Σy	Σx ²	Σх*ч
(Σ x) ²			

Methods to obtain the unknown conc 2. Least square fitting method:

-				7
17		C		hr
v	_	L	T	UX.
1		-		~

0

X conc(mg/ml)	Y (abs.)	X ²	X*Y	ÿ
X1	Y1	X1 ²	X1*Y1	ӯ1=c+bx1
X2	Y2	X2 ²	X2*Y2	ӯ2=c+bx2
X3	Y3	X3 ²	X3*Y3	ӯ3=c+bx3
X4	Y4	X4 ²	X4*Y4	ӯ4=c+bx4
X5	Y5	X5 ²	X5*Y5	ӯ5=c+bx5
Σx	Σy	Σx ²	Σх*ү	
(Σx) ²				

From these variables using the above equations we can obtain c & b, then by substitute each X value we can get \overline{y} (calculated value)

Calibration curve of Nitrofurantoin

✓ Chemical name of drug:

0

Calibration curve of Nitrofurantoin

✓ Solubilty of drug:

0

It is slightly soluble in water and ethanol, and souble in DMF (dimethyl formamide)

✓ Action of drug:

Nitrofurantoin is an oral antibiotic widely used either short term to treat acute urinary tract infections or long term as chronic prophylaxis against recurrent infections.

1. Stock solution preparation

0

Preparation of 100mg/ml stock sol· Of nitrofurantoin can be done via take 10g (10000mg) to dissolve up to 100 ml of DMF (suitable solvent)

10000mg/100ml=100mg/ml

2. Standard solution preparation

0

From stock sol· above prepare standard sol of deferent conc·(1·5, 2,3,4,&5mg/ml),Take certain volume from the stock then complete the volume to 100 ml by addition of DMF

To get standard sol with 1.5 mg/ml conc .:-

C1V1=C2V2 ------ 100*V1=1.5*100 -----So V1 = 1.5 ml of stock sol. Completed to 100 ml with DMF

And so on for other standard conc. (2, 3, 4, & 5mg/ml)

X conc(mg/ml)
1.5
2
3
4
5

3∙ Absorbance measurement

0

Determine the absorbance of suitable blank, 1.5,2,3,4,&5 mg /ml standard solutions by spectrophotometry at 370 nm

4. Apply the least squares method: Calculate b, c, then \bar{y} depending on the least squares method \cdot

$$b = \frac{\sum (x \cdot y) - \sum (x) \cdot \frac{\sum (y)}{n}}{(\sum x^2) - \frac{(\sum x)^2}{n}} = 0.00$$
$$c = \frac{\sum y - b(\sum x)}{n} = 0.06$$
$$\bar{y} = c + bx = ?$$

X conc(mg/ml)	Y (abs.)	X ²	X*Y	ÿ
X1	Y1	X1 ²	X1*Y1	ӯ1=c+bx1
X2	Y2	X2 ²	X2*Y2	ÿ2=c+bx2
X3	Y3	X3 ²	X3*Y3	ӯ3=c+bx3
X4	Y4	X4 ²	X4*Y4	ӯ4=c+bx4
X5	Y5	X5 ²	X5*Y5	ӯ5=c+bx5
Σx	Σy	Σx ²	Σх*ү	
(Σ x) ²				

5. Plot \bar{y} vs conc standard curve

X conc(mg/ml)	Y (abs.)	X ²	Х*Ү	ÿ
1.5	0.02	2.25	0.03	0.4545
2	0.04	4	0.08	0.477
3	0.08	9	0.24	0.522
4	0.12	16	0.48	0.567
5	0.16	25	0.8	0.612
15.5	0.42	56.25	1.63	
240.25				

0

0

