

Real Numbers

Types of Real Numbers ℝ

- 1. Natural numbers $\mathbb{N} = \{1, 2, 3, 4, \dots\}$
- 2. Integer numbers $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \cdots\}$
 - 3. Rational numbers \mathbb{Q}

$$r = \frac{m}{n}$$
 : $m \in Z$, $n \in N$

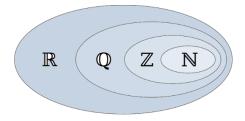
Examples

$$\frac{1}{2}$$
, $\frac{5}{3}$, $-\frac{16}{5}$, $4 = \frac{16}{4}$, $0.2 = \frac{2}{10}$

4.Irrational Numbers: These are numbers that cannot be expressed as a ratio of integers.

Examples

$$\sqrt{2}$$
 , $\sqrt[3]{5}$, π , $2^{\sqrt{3}}$, e



Intervals

Certain sets of real numbers, called intervals, occur frequently in calculus and correspond geometrically to line segments. If a < b, then the open interval from a to b consists of all numbers between a and b and is denoted by the symbol (a, b). The closed interval from a to b includes the endpoints and is denoted [a, b]. Using set-builder notation, we can write

$$(a,b) = \{x : a < x < b\}$$

$$a \qquad b$$

Notation	Set description	Graph
(a, b)	$\{x \mid a < x < b\}$	$a \qquad b$
[<i>a</i> , <i>b</i>]	$\{x \mid a \le x \le b\}$	a b
[a, b)	$\{x \mid a \le x < b\}$	$a \qquad b$
(a, b]	$\{x \mid a < x \le b\}$	$a \qquad b$
(a,∞)	$\{x \mid a < x\}$	
$[a,\infty)$	$\{x \mid a \le x\}$	
$(-\infty, b)$	$\{x \mid x < b\}$	\xrightarrow{b}
$(-\infty, b]$	$\{x \mid x \le b\}$	\xrightarrow{b}
$(-\infty,\infty)$	\mathbb{R} (set of all real numbers)	

The following table lists the possible types of intervals

Absolute Value: The absolute value of a number a, denoted by |a|.

$|a| = \begin{cases} a & if \quad a \ge 0 \\ -a & if \quad a < 0 \end{cases}$

Properties of Absolute Value Inequalities			
Inequality	Equivalent form	Graph	
1. $ x < c$	-c < x < c	-c 0 c	
2. $ x \le c$	$-c \le x \le c$	-c 0 c	
3. $ x > c$	x < -c or $c < x$	-c 0 c	
4. $ x \ge c$	$x \le -c$ or $c \le x$	-c 0 c	

Inequalities:

An inequality is an expression involving one of the symbols $\ge, \le, >$ or <When we are asked to solve an inequality, the inequality will contain an unknown variable, say x. Solving means obtaining all values of x for which the inequality is true.

Properties:

1. Adding or subtracting the same quantity from both sides of an inequality leaves the inequality sign unchanged.

(If
$$x < a$$
 then $x \mp b < a \mp b$.)

2. Multiplying or dividing both sides by a positive number leaves the inequality sign unchanged.

$$\left(\text{If } x < a \text{ and } b > 0 \text{ then } xb < ab \text{ and } \frac{x}{b} < \frac{a}{b} \right)$$

3. Multiplying or dividing both sides by a negative number reverses the inequality.

 $\left(\text{If } x < a \text{ and } b < 0 \text{ then } xb > ab \text{ and } \frac{x}{b} > \frac{a}{b} \right)$

Example 1: Solve
$$3x - 5 \le 13$$
.
 $3x - 5 \le 13 \implies 3x \le 18 \implies x \le 6$
Example 2: Solve $-2x - 4 \le -10$.
 $-2x - 4 \le -10 \implies -2x \le -6 \implies x \ge 3$

Example 3: Solve
$$|2x - 5| \le 7$$
.
 $|2x - 5| < 7 \Rightarrow -7 < 2x - 5 < 7$
 $\Rightarrow -7 + 5 < 2x < 7 + 5$
 $\Rightarrow -2 < 2x < 12$
 $\Rightarrow -1 < x < 6$

Example 4: Solve
$$|2 - 5x| \ge 3$$
.
 $|2 - 5x| \ge 3 \quad \Rightarrow \quad 2 - 5x \ge 3 \text{ or } 2 - 5x \le -3$
 $\Rightarrow \quad -5x \ge 1 \text{ or } -5x \le -5$
 $\Rightarrow \quad x \le -\frac{1}{5} \text{ or } x \ge 1$
The solution is
 $\left\{x: x \le -\frac{1}{5}\right\} \cup \{x: x \ge 1\}$

Solve quadratic inequality:

A quadratic inequality can be written in one of the standard forms

$$ax^{2} + bx + c < 0$$
 $ax^{2} + bx + c > 0$ $ax^{2} + bx + c \le 0$ $ax^{2} + bx + c \ge 0$

where a, b and c are real numbers and $a \neq 0$.

To solve a quadratic inequality in one variable, we will use the following steps to find the values of the variable that make the inequality true.

1- Write the inequality in standard form and solve its related quadratic equation.

2- Locate the solutions (called critical numbers) of the related quadratic equation on a number- line.

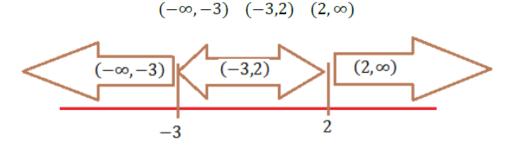
3- Test each interval on the number line created in step 2 by choosing a test value from the interval and determining whether it satisfies the inequality. The solution set includes the intervals whose test value make the inequality true.

4- Determine whether the endpoints of the intervals are included in the solution set. Example 5: Solve $x^2 + x < 6$.

Solution: $x^2 + x < 6 \implies x^2 + x - 6 < 0$

We will solve the related quadratic equation $x^2 + x - 6 = 0$ $(x - 2)(x + 3) = 0 \implies x = 2, -3$

These two critical numbers will separate the number-line into three intervals



If we choose $-4 \in (-\infty, -3) \Rightarrow (-4)^2 + (-4) - 6 < 0 \Rightarrow 6 < 0$ False × If we choose $0 \in (-3,2) \Rightarrow (0)^2 + 0 - 6 < 0 \Rightarrow -6 < 0$ True $\sqrt{}$ If we choose $3 \in (2,\infty) \Rightarrow (3)^2 + 3 - 6 < 0 \Rightarrow 6 < 0$ False × Then the solution is the interval (-3,2)

 $15 + 2x - x^2 \le 0.$ Example 6: Solve

Solution: We will solve the related quadratic equation $15 + 2x - x^2 = 0$.

$$x^{2} - 2x - 15 = 0 \quad \Rightarrow \quad (x - 5)(x + 3) = 0 \quad \Rightarrow \quad x = 5, -3$$

These two critical numbers will separate the number-line into three intervals

 $(-\infty, -3], [-3, 5] \text{ and } [5, \infty)$

If we choose $-4 \in (-\infty, -3] \Rightarrow 15 + 2 \times (-4) - (-4)^2 \le 0 \Rightarrow -9 \le 0$ True $\sqrt{-4}$ If we choose $0 \in [-3,5] \Rightarrow 15 + 2 \times 0 - (0)^2 \le 0 \Rightarrow 15 \le 0$ False \times If we choose $6 \in [5, \infty) \Rightarrow 15 + 2 \times 6 - (6)^2 \le 0 \Rightarrow -9 \le 0$ True $\sqrt{}$ Then the solution is $(-\infty, -3] \cup [5, \infty)$

Example 7: Solve

$$\frac{x-4}{x+1} \ge 0$$

Solution:

The zero of numerator is $x - 4 = 0 \Rightarrow x = 4$ The zero of denominator is $x + 1 = 0 \Rightarrow x = -1$

These two critical numbers will separate the number-line into three intervals

$$(-\infty, -1) , \quad (-1, 4] \text{ and } [4, \infty)$$

If we choose $-2 \in (-\infty, -1) \Rightarrow \frac{x-4}{x+1} \ge 0 \Rightarrow \frac{-2-4}{-2+1} \ge 0 \Rightarrow 6 \ge 0$ True $\sqrt{}$
If we choose $0 \in (-1, 4] \Rightarrow \frac{x-4}{x+1} \ge 0 \Rightarrow \frac{0-4}{0+1} \ge 0 \Rightarrow -4 \ge 0$ False \times
If we choose $5 \in [4, \infty) \Rightarrow \frac{x-4}{x+1} \ge 0 \Rightarrow \frac{5-4}{5+1} \ge 0 \Rightarrow \frac{1}{6} \ge 0$ True $\sqrt{}$
Then the solution is $(-\infty, -1) \cup [4, \infty)$

Exercises

Solve the inequalities

1. $2x^2 + 4x \le x^2 + 32$ 3. $3x^2 + 2x \ge 2x^2 + 8$ 2. |2x - 5| < 95. $\frac{3x+9}{3-x} \ge 0$ 6. $\frac{6-3x}{5-x} \le 0$ 4. $|x^2 - 5x| < 6$