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CHAPTER 1 

Tension and Compression 

1.1 Internal Effects of Forces 

The bodies themselves will no longer be considered to be perfectly rigid as was 

assumed in statics; instead, the calculation of the deformations of various bodies 

under a variety of loads will be one of our primary concerns in the study of strength 

of materials. 

Axially Loaded Bar  

The simplest case to consider at the start is that of an initially straight metal bar of 

constant cross section, loaded at its ends by a pair of oppositely directed collinear 

forces coinciding with the longitudinal axis of the bar and acting through the centroid 

of each cross section. For static equilibrium the magnitudes of the forces must be 

equal. If the forces are directed away from the bar, the bar is said to be in tension; if 

they are directed toward the bar, a state of compression exists. These two conditions 

are illustrated in Fig. 1-1. 

 

Under the action of this pair of applied forces, internal resisting forces are set up 

within the bar and their characteristics may be studied by imagining a plane to be 

passed through the bar anywhere along its length and oriented perpendicular to the 

longitudinal axis of the bar. Such a plane is designated as a-ain Fig. 1-2(a). If for 

purposes of analysis the portion of the bar to the right of this plane is considered to 

be removed, as in Fig. 1-2(b), then it must be replaced by whatever effect it exerts 

upon the left portion. By this technique of introducing a cutting plane, the originally 

internal forces now become external with respect to the remaining portion of the 

body. For equilibrium of the portion to the left this ‘‘effect’’ must be a horizontal 

force of magnitude P. However, this force P acting normal to the cross section a-a is 
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actually the resultant of distributed forces acting over this cross section in a direction 

normal to it. 

At this point it is necessary to make some assumption regarding the manner of 

variation of these distributed forces, and since the applied force P acts through the 

centroid it is commonly assumed that they are uniform across the cross section. 

Normal Stress  

Instead of speaking of the internal force acting on some small element of area, it is 

better for comparative purposes to treat the normal force acting over a unit area of 

the cross section. The intensity of normal force per unit area is termed the normal 

stress and is expressed in units of force per unit area, N/m2. If the forces applied to 

the ends of the bar are such that the bar is in tension, then tensile stresses are set up 

in the bar; if the bar is in compression we have compressive stresses. The line of 

action of the applied end forces passes through the centroid of each cross section of 

the bar. 

Normal Strain  

Let us suppose that the bar of Fig. 1-1 has tensile forces gradually applied to the 

ends. The elongation per unit length, which is termed normal strain and denoted by 

Δ, may be found by dividing the total elongation ∆ by the length L, i.e., 

𝜀 =
∆

𝐿
 

The strain is usually expressed in units of meters per meter and consequently is 

dimensionless. 

Stress-Strain Curve  

As the axial load in Fig. 1-1 is gradually increased, the total elongation over the bar 

length is measured at each increment of load and this is continued until fracture of 

the specimen takes place. Knowing the original cross-sectional area of the test 

specimen, the normal stress, denoted by s, may be obtained for any value of the axial 

load by the use of the relation 

𝜎 =
𝑃

𝐴
 

where (P) denotes the axial load in newtons and (A) The original cross-sectional 

area. Having obtained numerous pairs of values of normal stress s and normal strain 
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, experimental data may be plotted with these quantities considered as ordinate and 

abscissa, respectively. This is the stress-strain curve or diagram of the material for 

this type of loading. Stress-strain diagrams assume widely differing forms for 

various materials. Figure 1-3(a) is the stress-strain diagram for a medium-carbon 

structural steel, Fig. 1-3(b) is for an alloy steel, and Fig. 1-3(c) is for hard steels and 

certain nonferrous alloys. For nonferrous alloys and cast iron the diagram has the 

form indicated in Fig. 1-3(d). 

 

Ex1/ In Fig. 1-8, determine an expression for the total elongation of an initially 

straight bar of length L, cross-sectional area A, and modulus of elasticity E if a 

tensile load P acts on the ends of the bar. 

 

SOLUTION:  

The unit stress in the direction of the force P is merely the load divided by the cross-

sectional area, i.e.,(𝜎 =  𝑃/𝐴). Also the unit strain 𝜀 is given by the total elongation 

∆ divided by the original length, i.e., 𝜀 = ∆/𝐿. By definition the modulus of 

elasticity E is the ratio of 𝜎 to 𝜀, i.e., 

𝐸 =
𝜎

𝜀
=

𝑃
𝐴⁄

∆
𝐿⁄

=
𝑃 ∗ 𝐿

𝐴 ∗ ∆
       𝑜𝑟      

𝑃 ∗ 𝐿

𝐴 ∗ 𝐸
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Ex2/ A steel bar of cross section 500 mm2 is acted upon by the forces shown in Fig.  

Determine the total elongation of the bar. For steel, consider E = 200 GPa. 

 

SOLUTION: The entire bar is in equilibrium, and hence are all portions of it. The 

portion between A and B has a resultant force of 50 kN acting over every cross 

section and a free-body diagram of this 0.6-m length appears as in Fig.(b). The force 

at the right end of this segment must be 50 kN to maintain equilibrium with the 

applied load at A. The elongation of this portion is 

 

The force acting in the segment between B and C is found by considering the 

algebraic sum of the forces to the left of any section between B and C, i.e., a resultant 

force of 35 kN acts to the left, so that a tensile force exists. The free-body diagram 

of the segment between B and C is shown in Fig.(c) and the elongation of it is 

 

Similarly, the force acting over any cross section between C and D must be 45 kN 

to maintain equilibrium with the applied load at D. The elongation of CD is 

 

The total elongation is 

 

Ex3/ Two prismatic bars are rigidly fastened together and support a vertical load of 

45 kN, as shown in Fig. 1-12. The upper bar is steel having length 10 m and cross-
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sectional area 60 cm2. The lower bar is brass having length 6 m and cross-sectional 

area 50 cm2. For steel E = 200 GPa, for brass E = 100 GPa. Determine the maximum 

stress in each material. 

 

SOLUTION: The maximum stress in the brass bar occurs just below the junction at 

section B-B. There, the vertical normal stress is caused by the combined effect of 

the load of 45 000 N together with the weight of the entire brass bar below B-B. Use 

specific weight in Table 1-3. 

The weight of the brass bar is Wb = 6 × (50 × 10–4) × 84000 = 2520 N. The stress at 

this section is 

 

The maximum stress in the steel bar occurs at section A-A, the point of suspension, 

because there the entire weight of the steel and brass bars gives rise to normal stress. 

The weight of the steel bar is Ws = 10 × (60 × 10–4) × 77000 = 4620 N. The stress 

across section A-A is 

 

Ductile and Brittle Materials  

Metallic engineering materials are commonly classified as either ductile or brittle 

materials. A ductile material is one having a relatively large tensile strain up to the 

point of rupture (for example, structural steel or aluminum) whereas a brittle material 

has a relatively small strain up to this same point. An arbitrary strain of 0.05 mm/mm 

is frequently taken as the dividing line between these two classes of materials. Cast 

iron and concrete are examples of brittle materials. 

 



Msc Yessar Ameer Ali Strength of Material Al-Mustaqbal University College 

Hooke’s Law  

For any material having a stress-strain curve of the form shown in Fig. 1-3(a), (b), 

or (c), it is evident that the relation between stress and strain is linear for 

comparatively small values of the strain. This linear relation between elongation and 

the axial force causing it is called Hooke’s law. To describe this initial linear range 

of action of the material we may consequently write 

𝜎 = 𝐸 ∗ 𝜀 

where E denotes the slope of the straight-line portion OP of each of the curves in 

Figs.1-3(a), (b), and (c). The quantity E, i.e., the ratio of the unit stress to the unit 

strain, is the modulus of elasticity of the material in tension, or, as it is often called, 

Young’s modulus. Values of E for various engineering materials are tabulated in 

handbooks. Table 1-3 for common materials appears at the end of this chapter. Since 

the unit strain  is a pure number (being a ratio of two lengths) it is evident that Ehas 

the same units as does the stress, N/m2. For many common engineering materials 

the modulus of elasticity in compression is very nearly equal to that found in tension. 

It is to be carefully noted that the behavior of materials under load as discussed in 

this book is restricted (unless otherwise stated) to the linear region of the stress-strain 

curve.  

1.2 Mechanical Properties of Materials  

The stress-strain curve shown in Fig. 1-3(a) may be used to characterize several 

strength characteris tics of the material. They are:  

Proportional Limit  

The ordinate of the point P is known as the proportional limit, i.e., the maximum 

stress that may be developed during a simple tension test such that the stress is a 

linear function of strain. For a material having the stress-strain curve shown in Fig. 

1-3(d), there is no proportional limit.  

Elastic Limit  

The ordinate of a point almost coincident with P is known as the elastic limit, i.e., 

the maximum stress that may be developed during a simple tension test such that 

there is no permanent or residual deformation when the load is entirely removed. For 

many materials the numerical values of the elastic limit and the proportional limit 

are almost identical and the terms are sometimes used synonymously. In those cases 
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where the distinction between the two values is evident, the elastic limit is almost 

always greater than the proportional limit.  

Elastic and Plastic Ranges  

The region of the stress-strain curve extending from the origin to the proportional 

limit is called the elastic range. The region of the stress-strain curve extending from 

the proportional limit to the point of rupture is called the plastic range.  

Yield Point  

The ordinate of the point Y in Fig. 1-3(a), denoted by syp, at which there is an 

increase in strain with no increase in stress, is known as the yield point of the 

material. After loading has progressed to the point Y, yielding is said to take place. 

Some materials exhibit two points on the stress-strain curve at which there is an 

increase of strain without an increase of stress. These are called upper and lower 

yield points.  

Ultimate Strength or Tensile Strength  

The ordinate of the point Uin Fig. 1-3(a), the maximum ordinate to the curve, is 

known either as the ultimate strength or the tensile strength of the material.  

Breaking Strength  

The ordinate of the point B in Fig. 1-3(a) is called the breaking strength of the 

material.  

Modulus of Resilience  

The work done on a unit volume of material, as a simple tensile force is gradually 

increased from zero to such a value that the proportional limit of the material is 

reached, is defined as the modulus of resilience. This may be calculated as the area 

under the stress-strain curve from the origin up to the proportional limit and is 

represented as the shaded area in Fig. 1-3(a). The unit of this quantity is N · m/m3 

in the SI system. Thus, resilience of a material is its ability to absorb energy in the 

elastic range. 

Modulus of Toughness  

The work done on a unit volume of material as a simple tensile force is gradually 

increased from zero to the value causing rupture is defined as the modulus of 

toughness. This may be calculated as the entire area under the stress-strain curve 
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from the origin to rupture. Toughness of a material is its ability to absorb energy in 

the plastic range of the material. 

Percentage Reduction in Area  

The decrease in cross-sectional area from the original area upon fracture divided by 

the original area and multiplied by 100 is termed percentage reduction in area. It is 

to be noted that when tensile forces act upon a bar, the cross-sectional area decreases, 

but calculations for the normal stress are usually made upon the basis of the original 

area. This is the case for the curve shown in Fig. 1-3(a). As the strains become 

increasingly larger it is more important to consider the instantaneous values of the 

cross-sectional area (which are decreasing), and if this is done the truestress-strain 

curve is obtained. Such a curve has the appearance shown by the dashed line in Fig. 

1-3(a). 

Percentage Elongation  

The increase in length of a bar after fracture divided by the initial length and 

multiplied by 100 is the percentage elongation. Both the percentage reduction in area 

and the percentage elongation are considered to be measures of the ductility of a 

material. 

Working Stress  

The above-mentioned strength characteristics may be used to select a working stress. 

Frequently such a stress is determined merely by dividing either the stress at yield 

or the ultimate stress by a number termed the safety factor. Selection of the safety 

factor is based upon the designer’s judgment and experience. Specific safety factors 

are sometimes specified in design codes. 

Strain Hardening  

If a ductile material can be stressed considerably beyond the yield point without 

failure, it is said to strainharden. This is true of many structural metals. The nonlinear 

stress-strain curve of a brittle material, shown in Fig. 1-3(d), characterizes several 

other strength measures that cannot be introduced if the stress-strain curve has a 

linear region. They are: 

Yield Strength  

The ordinate to the stress-strain curve such that the material has a predetermined 

permanent deformation or ‘‘set’’ when the load is removed is called the yield 
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strength of the material. The permanent set is often taken to be either 0.002 or 0.0035 

mm per mm. These values are of course arbitrary. In Fig. 1-3(d) a set 1 is denoted 

on the strain axis and the line O′Y is drawn parallel to the initial tangent to the curve. 

The ordinate of Y represents the yield strength of the material, sometimes called the 

proof stress. 

Tangent Modulus  

The rate of change of stress with respect to strain is known as the tangent modulus 

of the material. It is essentially an instantaneous modulus given by 

𝐸𝑡 =
𝑑𝜎

𝑑𝜀
 

Coefficient of Linear Expansion  

This is defined as the change of length per unit length of a straight bar subject to a 

temperature change of one degree and is usually denoted by a. The value of this 

coefficient is independent of the unit of length but does depend upon the temperature 

scale used. For example, from Table 1-3 at the end of this chapter the coefficient for 

steel is 12 × 10–6/°C. Temperature changes in a structure give rise to internal 

stresses, just as do applied loads. The thermal strain due to a temperature change ∆T 

is  

𝜀𝑡 = 𝛼 ∗ ∆𝑇 

Ex4/ A solid brass of length L=100mm of diameter D= 15mm is used to fix two rigid 

surfaces. Find the stresses induced into it if the temperature of the bar is raised by 

20cͦ. Given α= 19x10−6/cͦ and E=103GPa/m². 

Solution: 

𝜎 = −𝐸𝛼∆𝑇 (𝑜𝑟 − 𝐸𝛼𝑇) 

𝜎𝑥 = −103 × 109 × 19 × 10−6 × 20 

     = −39.1 𝑀𝑃𝑎 

It is interesting to note that this result does not depend on either the length or 

diameter of the cylinder 
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Ex5/ Two parallel walls 7m apart, are held by steel bar of 25mm diameter, the bar 

passes through a metal plate and nut at each end, the nuts are screwed up to the plates 

which the bar is at 150cͦ. Find the pull exerted by the bar after cooling to 16cͦ. If  

1- the ends do not yield.  

2- the total yield at the two ends is 6.25mm. Given Es = 220 GPa and α = 11x10−6/cͦ 

solution  

1- No yield                 

Total axial strain is: 

𝜀 = 𝜀𝑇 + 𝜀𝑆     

But: 

𝜀 = 0       (𝑛𝑜 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ) 

𝜀𝑇 = 𝛼∆𝑇 = 11 × 10−6(16 − 150) 

    =  −1474 × 10−6  (𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑡𝑒𝑛𝑠𝑖𝑜𝑛) 

Substituting the strain due to constrain, in 

𝜀𝑆 = 𝜀 − 𝜀𝑇 

     = 0 − (−1474 × 10−6) 

     = 1474 × 10−6 (𝑡𝑒𝑛𝑠𝑖𝑙𝑒) 

But: 

𝜀𝑆 =
𝜎

𝐸
 

Then: 

𝜎 = 𝐸 ∙ 𝜀𝑆 = 220 × 109 × 1474 × 10−6 

    = 324.28 𝑀𝑃𝑎 

The pull is 

𝑃 = 𝜎𝐴 

= 324.28 ×
𝜋𝑑2

4
 



Msc Yessar Ameer Ali Strength of Material Al-Mustaqbal University College 

    = 324.28 ×
𝜋 × (0.025)2

4
= 159180.57 𝑁 = 159.2 𝑘𝑁 

2- When yielding in ΔL=6.25 mm  

The total axial strain in: 

𝜀 = 𝜀𝑇 + 𝜀𝑆  ,       

but: 

𝜀 =
6.25

7000
= −893 × 10−6       (𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

Thermal strain is 

𝜀𝑇 = 𝛼∆𝑇 = 11 × 10−6(16 − 150) 

    =  −1474 × 10−6  (𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 ) 

Therefore the induced strain is: 

𝜀𝑆 = 𝜀 − 𝜀𝑇 

     = −893 × 10−6 − (−1474 × 10−6) 

     = 581 × 10−6 (𝑡𝑒𝑛𝑠𝑖𝑙𝑒) 

The axial stress is: 

𝜎 = 𝐸 ∙ 𝜀𝑆 = 220 × 109 × 581 × 10−6 

    = 127.82 𝑀𝑃𝑎 

𝑃 = 𝜎𝐴 

    = 127.82 ×
𝜋 × (0.025)2

4
= 62743.5 𝑁 = 62.7434 𝑘𝑁 

 

 

 

                                                          

 


