

Ministry of Higher Education and Scientific Research Al-Mustaqbal University College Department of Technical Computer Engineering

Week: 20, 21

Mathematics II

2nd Stage

Lecturer: Dr. Sarah alameedee

1. Sequences

A sequence can be thought of as a list of numbers written in a definite order:

$$a_1, a_2, a_3, \dots, a_n$$

The number a_1 is called the *first term*, a_2 is the *second term*, and in general a_n is the *nth term*. We will deal exclusively with infinite sequences and so each term will have a successor a_{n+1} .

Notice that for every positive integer n there is a corresponding number a_n and so a sequence can be defined as a function whose domain is the set of positive integers. But we usually write a_n instead of the function notation f(n) for the value of the function at the number.

Definition:

The sequence $\{a_1, a_2, a_3, \ldots\}$ is also denoted by

$$\{a_n\}$$
 or $\{a_n\}_{n=1}^{\infty}$

i. Convergence and divergence

Sometimes the numbers in a sequence approach a single value as the index n increases. This happens in the sequence.

$$\left\{1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\ldots,\frac{1}{n},\ldots\right\}$$

whose terms approach 0 as *n* gets large, and in the sequence.

$$\left\{0,\frac{1}{2},\frac{2}{3},\frac{3}{4},\frac{4}{5},\ldots,1-\frac{1}{n},\ldots\right\}$$

whose terms approach 1. On the other hand, sequences like

$$\{\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n}, \ldots\}$$

Definition:

The sequence $\{a_n\}$ converges to the number L if for every positive number P there corresponds an integer N such that for all n,

$$n > N \implies |a_n - L| < \epsilon.$$

If no such number L exists, we say that $\{a_n\}$ diverges.

If $\{a_n\}$ converges to L, we write $\lim_{n\to\infty} a_n = L$, or simply $a_n \to L$, and call L the **limit** of the sequence

ii. Limit properties of the sequences

Let $\{a_n\}$ and $\{b_n\}$ be sequences of real numbers, and let A and B be real numbers. The following rules hold if $\lim_{n\to\infty} a_n = A$ and $\lim_{n\to\infty} b_n = B$.

1. Sum Rule:
$$\lim_{n\to\infty} (a_n + b_n) = A + B$$

2. Difference Rule:
$$\lim_{n\to\infty} (a_n - b_n) = A - B$$

3. Constant Multiple Rule:
$$\lim_{n\to\infty} (k \cdot b_n) = k \cdot B$$
 (any number k)

4. Product Rule:
$$\lim_{n\to\infty} (a_n \cdot b_n) = A \cdot B$$

5. Quotient Rule:
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B} \quad \text{if } B \neq 0$$

2. <u>Infinite series</u>

If we try to add the terms of an infinite sequence $\{a_n\}_{n=1}^{\infty}$ we get an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

which is called an infinite series (or just a series) and is denoted, for short, by the symbol

$$\sum_{n=1}^{\infty} a_n \qquad \text{or} \qquad \sum a_n$$

Definition:

DEFINITIONS Given a sequence of numbers $\{a_n\}$, an expression of the form

$$a_1 + a_2 + a_3 + \cdots + a_n + \cdots$$

is an **infinite series**. The number a_n is the **nth term** of the series. The sequence $\{s_n\}$ defined by

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 \vdots
 $s_n = a_1 + a_2 + \cdots + a_n = \sum_{k=1}^n a_k$

is the **sequence of partial sums** of the series, the number s_n being the **nth partial sum**. If the sequence of partial sums converges to a limit L, we say that the series **converges** and that its **sum** is L. In this case, we also write

$$a_1 + a_2 + \cdots + a_n + \cdots = \sum_{n=1}^{\infty} a_n = L.$$

If the sequence of partial sums of the series does not converge, we say that the series **diverges**.

Properties of series aljebra

If Σa_n and Σb_n are convergent series, then so are the series Σca_n (where c is a constant), $\Sigma (a_n + b_n)$, and $\Sigma (a_n - b_n)$, and

(i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$
 (ii) $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$

(iii)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

i. <u>Integral test</u>

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(x)$, where f is continuous, positive, decreasing function of x for all $x \ge N$ (N a positive integer). If:

$$\int_{N}^{\infty} f(x) dx$$
 is convergant then the $\sum_{n=N}^{\infty} a_n$ is also convergant

4

ii. The Ratio Test

The Ratio Test measures the rate of growth (or decline) of a series by examining the ratio a_{n+1}/a_n . For a geometric series $\sum ar^n$, this rate is a constant and the $ar^{n+1}/ar^n = r$. series converges if and only if its ratio is less than 1 in absolute value. The Ratio Test is a powerful rule extending that result.

Let $\sum a_n$ be any series and suppose that:

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho.$$

Then

- 1. The series converges absolutely if $\rho < 1$.
- 2. The series diverges if $\rho > 1$ or ρ is infinite.
- 3. The test is inconclusive if $\rho = 1$.

iii. Geometric series

Geometric series are series of the form

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$$

in which a and r are fixed real numbers and $a \neq 0$. The series can also be written as $\sum_{n=0}^{\infty} ar^n$. The **ratio** r can be positive, as in

The sum of geometric series is defined as:

$$s_n = \frac{a(1-r^n)}{1-r}$$

Definition:

The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \qquad |r| < 1$$

If $|r| \ge 1$, the geometric series is divergent.

J

iv. Power series

We begin with the formal definition, which specifies the notation and terminology used for

power series.

Definition:

A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$
 (1)

A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n(x-a)^n = c_0 + c_1(x-a) + c_2(x-a)^2 + \dots + c_n(x-a)^n + \dots$$
 (2)

in which the **center** a and the **coefficients** $c_0, c_1, c_2, \ldots, c_n, \ldots$ are constants.

Radius of convergence of power series

A power series $\sum_{k=0}^{\infty} c_k x^k$ will converge only for certain values of x. For instance, $\sum_{k=0}^{\infty} x^k$ converges for -1 < x < 1. In general, there is always an interval (-R, R) in which a power series converges, and the number R is called the radius of convergence (while the interval itself is called the interval of convergence). The quantity R is called the radius of convergence because, in the case of a power series with complex coefficients, the values of x with |x| < R form an open disk with radius R.

To find the radius of convergance we follow the steps:

1. Use the ratio test and evaluate the limit and but the ratio < 1

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\rho.$$

- 2. Solve the inequality to find the interval of x.
- 3. Test the endpoint value of the interval for convergance.

Examples

1. Sequences

i. Find the first four terms of the following sequences:

$$a-\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty} \qquad b-\left\{\sqrt{n-3}\right\}_{n=3}^{\infty} \qquad c-\left\{\cos\frac{n\pi}{6}\right\}_{n=0}^{\infty}$$

Solution

a-
$$a_n = \frac{n}{n+1}$$
 $\left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots, \frac{n}{n+1}, \dots \right\}$
b- $a_n = \sqrt{n-3}, \ n \ge 3$ $\left\{ 0, 1, \sqrt{2}, \sqrt{3}, \dots, \sqrt{n-3}, \dots \right\}$
c- $a_n = \cos \frac{n\pi}{6}, \ n \ge 0$ $\left\{ 1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \dots, \cos \frac{n\pi}{6}, \dots \right\}$

ii. Determine whether the sequence converges or diverges. If it converges, find the limit

a-
$$a_n = 2 + (0.1)^n$$
 b- $a_n = \frac{n + (-1)^n}{n}$ c- $a_n = \frac{1 - 2n}{1 + 2n}$ d- $a_n = \frac{1 - 5n^4}{n^4 + 8n^3}$ e- $a_n = \frac{n + 3}{n^2 + 5n + 6}$ f- $a_n = \frac{n^2 - 2n + 1}{n - 1}$ g- $a_n = \frac{1 - n^3}{70 - 4n^2}$

Solution

a-
$$\lim_{n \to \infty} 2 + (0.1)^n = 2 \Rightarrow \text{converges}$$

b- $\lim_{n \to \infty} \frac{n + (-1)^n}{n} = \lim_{n \to \infty} 1 + \frac{(-1)^n}{n} = 1 \Rightarrow \text{converges}$
c- $\lim_{n \to \infty} \frac{1 - 2n}{1 + 2n} = \lim_{n \to \infty} \frac{\binom{1}{n} - 2}{\binom{1}{n} + 2} = \lim_{n \to \infty} \frac{-2}{2} = -1 \Rightarrow \text{converges}$

d-
$$\lim_{n \to \infty} \frac{1-5n^4}{n^4+8n^3} = \lim_{n \to \infty} \frac{\left(\frac{1}{n^4}\right)-5}{1+\left(\frac{8}{n}\right)} = -5 \implies \text{converges}$$

e-
$$\lim_{n \to \infty} \frac{n+3}{n^2+5n+6} = \lim_{n \to \infty} \frac{n+3}{(n+3)(n+2)} = \lim_{n \to \infty} \frac{1}{n+2} = 0 \Rightarrow \text{converges}$$

8

$$f_{-n} \lim_{n \to \infty} \frac{n^2 - 2n + 1}{n - 1} = \lim_{n \to \infty} \frac{(n - 1)(n - 1)}{n - 1} = \lim_{n \to \infty} (n - 1) = \infty \implies \text{diverges}$$

$$\text{g-} \lim_{n \to \infty} \ \tfrac{1-n^3}{70-4n^2} = \lim_{n \to \infty} \ \tfrac{\left(\tfrac{1}{n^2}\right)-n}{\left(\tfrac{70}{n^2}\right)-4} = \infty \ \Rightarrow \ diverges$$

2. Infinite series

i. **Integral test**

Use the Integral Test to determine if the following series is convergent or divergent.

$$a-\sum_{n=1}^{\infty}\frac{1}{n^2}$$

a-
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 b- $\sum_{n=1}^{\infty} \frac{1}{n^2 + 4}$ c- $\sum_{n=1}^{\infty} \frac{1}{n + 4}$ d- $\sum_{n=1}^{\infty} e^{-2n}$

$$c-\sum_{n=1}^{\infty}\frac{1}{n+4}$$

$$d-\sum_{n=1}^{\infty}e^{-2t}$$

$$e^{-\sum_{n=1}^{\infty} \frac{n}{n^2+4}}$$

Solution

a- $f(x) = \frac{1}{x^2}$ is positive, continuous, and decreasing for $x \ge 1$:

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \left[-\frac{1}{x} \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left(-\frac{1}{b} + 1 \right) = 1 \Rightarrow \int_{1}^{\infty} \frac{1}{x^{2}} dx \text{ converges} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}} \text{ converges}$$

b- $f(x) = \frac{1}{x^2 + 4}$ is positive, continuous, and decreasing for $x \ge 1$

$$\int_{1}^{\infty} \frac{1}{x^{2}+4} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}+4} dx = \lim_{b \to \infty} \left[\frac{1}{2} \tan^{-1} \frac{x}{2} \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left(\frac{1}{2} \tan^{-1} \frac{b}{2} - \frac{1}{2} \tan^{-1} \frac{1}{2} \right) = \frac{\pi}{4} - \frac{1}{2} \tan^{-1} \frac{1}{2}$$

$$\int_{1}^{\infty} \frac{1}{x^{2}+4} dx \text{ converges} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^{2}+4} \text{ converges}$$

c- $f(x) = \frac{1}{x+4}$ is positive, continuous, and decreasing for $x \ge 1$:

$$\int_{1}^{\infty} \frac{1}{x+4} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x+4} dx = \lim_{b \to \infty} \left[\ln|x+4| \right]_{1}^{b}$$

$$= \lim_{b \to \infty} (\ln|b+4| - \ln 5) = \infty$$

$$\Rightarrow \int_{1}^{\infty} \frac{1}{x+4} dx \text{ diverges} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{n+4} \text{ diverges}$$

d- $f(x) = e^{-2x}$ is positive, continuous, and decreasing for $x \ge 1$:

$$\begin{split} & \int_{1}^{\infty} e^{-2x} \, dx = \lim_{b \to \infty} \int_{1}^{b} e^{-2x} \, dx = \lim_{b \to \infty} \left[-\frac{1}{2} e^{-2x} \right]_{1}^{b} \\ & = \lim_{b \to \infty} \left(-\frac{1}{2e^{2b}} + \frac{1}{2e^{2}} \right) = \frac{1}{2e^{2}} \end{split}$$

e- $f(x) = \frac{x}{x^2+4}$ is positive and continuous for $x \ge 1$, f'(x) $f'(x) = \frac{4-x^2}{(x^2+4)^2} < 0 \text{ for } x > 2 \text{, thus f is decreasing for } x \ge 3;$ $\int_3^\infty \frac{x}{x^2+4} \, dx = \lim_{b \to \infty} \int_3^b \frac{x}{x^2+4} \, dx = \lim_{b \to \infty} \left[\frac{1}{2} \ln(x^2+4) \right]_3^b$ $= \lim_{b \to \infty} \left(\frac{1}{2} \ln(b^2+4) - \frac{1}{2} \ln(13) \right) = \infty$ $\Rightarrow \int_3^\infty \frac{x}{x^2+4} \, dx \quad \text{diverges} \Rightarrow \sum_{n=3}^\infty \frac{n}{n^2+4} \text{diverges}$ $\Rightarrow \sum_{n=1}^\infty \frac{n}{n^2+4} = \frac{1}{5} + \frac{2}{8} + \sum_{n=2}^\infty \frac{n}{n^2+4} \text{ diverges}$

ii. Ratio test

Use the Ratio Test to determine if each series converges absolutely or diverges

a.
$$\sum_{n=1}^{\infty} \frac{2^{n+1}}{n3^{n-1}}$$
 b.
$$\sum_{n=1}^{\infty} \frac{n^4}{(-4)^n}$$
 c.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{3^n}$$
 d.
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3 2^n}$$

Solution

$$\frac{2^{n+1}}{n \cdot 3^{n-1}} > 0$$
 for all $n \ge 1$

a-

$$\begin{split} &\lim_{n \to \infty} \left(\frac{\frac{2^{(n+1)+1}}{(n+1) \cdot 3^{(n+1)-1}}}{\frac{2^{n+1}}{n \cdot 3^{n-1}}} \right) = \lim_{n \to \infty} \left(\frac{2^{n+1} \cdot 2}{(n+1) \cdot 3^{n-1} \cdot 3} \cdot \frac{n \cdot 3^{n-1}}{2^{n+1}} \right) \\ &= \lim_{n \to \infty} \left(\frac{2n}{3n+3} \right) = \lim_{n \to \infty} \left(\frac{2}{3} \right) = \frac{2}{3} < 1 \\ &\Rightarrow \sum_{n=1}^{\infty} \frac{2^{n+1}}{n \cdot 3^{n-1}} \text{ converges} \end{split}$$

$$\begin{array}{l} b\text{-}\frac{n^4}{4^n} > 0 \text{ for all } n \geq 1 \\ & \lim_{n \to \infty} \left(\frac{\frac{(n+1)^4}{4^{n+1}}}{\frac{n^4}{4^n}}\right) = \lim_{n \to \infty} \left(\frac{(n+1)^4}{4^{n} \cdot 4} \cdot \frac{4^n}{n^4}\right) \\ & = \lim_{n \to \infty} \left(\frac{n^4 + 4n^3 + 6n^2 + 4n + 1}{4n^4}\right) = \lim_{n \to \infty} \left(\frac{1}{4} + \frac{1}{n} + \frac{3}{2n^2} + \frac{1}{n^3} + \frac{1}{4n^4}\right) = \frac{1}{4} < 1 \\ & \Rightarrow \sum_{n=1}^{\infty} \frac{n^4}{4^n} \text{ converges} \end{array}$$

c-
$$\frac{n+2}{3^n} > 0$$
 for all $n \ge 1$; $\lim_{n \to \infty} \left(\frac{\frac{(n+1)+2}{3^{n+1}}}{\frac{n+2}{3^n}} \right)$
= $\lim_{n \to \infty} \left(\frac{n+3}{3^{n} \cdot 3} \cdot \frac{3^n}{n+2} \right) = \lim_{n \to \infty} \left(\frac{n+3}{3^n+6} \right) = \lim_{n \to \infty} \left(\frac{1}{3} \right) = \frac{1}{3} < 1$
 $\Rightarrow \sum_{n=1}^{\infty} \frac{n+2}{3^n}$ converges

d-
$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{3^{n+1}}{(n+1)^3 2^{n+1}} \cdot \frac{n^3 2^n}{3^n}$$

$$= \lim_{n \to \infty} \frac{n^3}{(n+1)^3} \left(\frac{3}{2}\right) = \frac{3}{2} > 1$$

$$\sum_{n=1}^{\infty} \frac{(-3)^n}{n^3 2^n} \text{ diverges}$$

3. Geometric series

Show if the following geometric series converge or diverge and find the sum if they converge:

a-
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n}$$
 b- $\sum_{n=2}^{\infty} \frac{1}{4^n}$ c- $\sum_{n=0}^{\infty} (-1)^n \frac{5}{4^n}$ d- $\sum_{n=0}^{\infty} \left(\frac{5}{2^n} - \frac{1}{3^n}\right)$ e- $\sum_{n=0}^{\infty} \left(\frac{2^{n+1}}{5^n}\right)$

Solution

a-
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n}$$
 $r = \frac{-1}{4}$ $a = 1$

since $|r| < 1 \implies$ the sum of the series converges to :

Sum =
$$\frac{a}{1-r}$$
 = $\frac{1}{1-(-\frac{1}{4})}$ = $\frac{1}{1+(\frac{1}{4})}$ = $\frac{4}{5}$

b-
$$\sum_{n=2}^{\infty} \frac{1}{4^n}$$
 $r = \frac{1}{4}$ $a = 1$

since $|r| < 1 \implies$ the sum of the series converges to :

Sum =
$$\frac{a}{1-r} = \frac{1}{1+\frac{1}{4}} = \frac{4}{3}$$
 for $n = (0, \infty)$

Since n = 2 then

$$\sum_{n=2}^{\infty} \frac{1}{4^n} = \text{Sum} - \frac{1}{4^0} - \frac{1}{4^1} = \frac{1}{12}$$

c-
$$\sum_{n=0}^{\infty} (-1)^n \frac{5}{4^n}$$
 $r = \frac{-1}{4}$ $a = 5$

since $|r| < 1 \implies$ the sum of the series converges to :

Sum =
$$\frac{a}{1-r} = \frac{5}{1-(-\frac{1}{4})} = 4$$

d-
$$\sum_{n=0}^{\infty} \left(\frac{5}{2^n} + \frac{1}{3^n} \right)$$

$$r_1 = \frac{1}{2}$$

$$a_1 = 5$$

$$r_1 = \frac{1}{2}$$
 $a_1 = 5$, $r_2 = \frac{1}{3}$ $a_2 = 1$

$$a_2 = 1$$

since $|r_1| < 1$ and $|r_2| < 1 \Rightarrow$ the sum of the series converges to :

Sum =
$$S_1 + S_2 = \frac{5}{1 - (\frac{1}{2})} - \frac{1}{1 - (\frac{1}{3})} = 10 - \frac{3}{2} = \frac{17}{2}$$

e-
$$\sum_{n=0}^{\infty} \left(\frac{2^{n+1}}{5^n} \right)$$
 $r = \frac{2}{5}$ $a = 2$

$$r=\frac{2}{5}$$

$$a = 2$$

since $|r| < 1 \implies$ the sum of the series converges to :

Sum =
$$\frac{a}{1-r} = \frac{2}{1-\frac{2}{5}} = \frac{10}{3}$$

4. Power series

Find the radius and interval of comvergance of the following power series:

$$a-\sum_{n=0}^{\infty}\chi^n$$

$$b-\sum_{n=0}^{\infty}(x+5)^n$$

$$c - \sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$$

a-
$$\sum_{n=0}^{\infty} x^n$$
 b- $\sum_{n=0}^{\infty} (x+5)^n$ c- $\sum_{n=0}^{\infty} \frac{(x-2)^n}{10^n}$ d- $\sum_{n=1}^{\infty} \frac{(x-1)^n}{\sqrt{n}}$

$$e - \sum_{n=1}^{\infty} \frac{(x-1)^n}{n^2 3^n}$$

Solution

a- Ratio test

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \ \Rightarrow \ \lim_{n \to \infty} \left| \frac{x^{n+1}}{x^n} \right| < 1 \ \Rightarrow \ |x| < 1 \ \Rightarrow \ -1 < x < 1$$

Test for endpoints

when x = -1 we have $\sum_{n=1}^{\infty} (-1)^n$, a divergent

when v = 1 we have $\sum_{i=1}^{\infty} 1$ a divergent series the radius is 1; the interval of convergence is -1 < x < 1

b- Ratio test

$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \implies \lim_{n \to \infty} \left| \frac{(x+5)^{n+1}}{(x+5)^n} \right| < 1 \implies |x+5| < 1 \implies -6 < x < -4$$

Test for endpoints

$$\sum_{n=1}^{\infty} (-1)^n$$
, a divergent series

when x = -6 we have

when
$$x = -4$$
 we have $\sum_{n=1}^{\infty} 1$, a divergent series

the radius is 1; the interval of convergence is -6 < x < -4

c- Ratio test

$$\begin{aligned} &\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \implies \lim_{n \to \infty} \left| \frac{(x-2)^{n+1}}{10^{n+1}} \cdot \frac{10^n}{(x-2)^n} \right| < 1 \implies \frac{|x-2|}{10} < 1 \\ &\Rightarrow |x-2| < 10 \implies -10 < x-2 < 10 \implies -8 < x < 12 \end{aligned}$$

Test for endpoints

when
$$x = -8$$
 we have $\sum_{n=1}^{\infty} (-1)^n$, a divergent series

when
$$x = 12$$
 we have $\sum_{n=1}^{\infty} 1$, a divergent series

the radius is 10; the interval of convergence is -8 < x < 12

d- Ratio test

$$\begin{aligned} &\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \implies \lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{(x-1)^n} \right| < 1 \\ &\Rightarrow |x-1| \sqrt{\lim_{n \to \infty} \frac{n}{n+1}} < 1 \implies |x-1| < 1 \\ &\Rightarrow -1 < x-1 < 1 \implies 0 < x < 2 \end{aligned}$$

Test for endpoints

when
$$x=0$$
 we have $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1/2}}$, a conditionally convergent series when $x=2$ we have $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$, a divergent series

the radius is 1; the interval of convergence is $0 \le x < 2$

e- Ratio test

$$\begin{split} & \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| < 1 \ \Rightarrow \ \lim_{n \to \infty} \left| \frac{(x-1)^{n+1}}{(n+1)^2 \, 3^{n+1}} \cdot \frac{n^2 \, 3^n}{(x-1)^n} \right| < 1 \\ & \Rightarrow \left| |x-1| \lim_{n \to \infty} \left(\frac{n^2}{3(n+1)^2} \right) = \frac{1}{3} |x-1| < 1 \ \Rightarrow -2 < x < 4 \end{split}$$

Test for endpoints

when
$$x=-2$$
 we have $\sum_{n=1}^{\infty}\frac{(-3)^n}{n^2\,3^n}=\sum_{n=1}^{\infty}\frac{(-1)^n}{n^2}$, an absolutely convergent series

when x=4 we have $\sum_{n=1}^{\infty} \frac{(3)^n}{n^2 \, 3^n} = \sum_{n=1}^{\infty} \frac{1}{n^2}$, an absolutely convergent series.

the radius is 3; the interval of convergence is $-2 \le x \le 4$