

LECTURE 6

INSTRUCTION SET OF 8085 MICROPROCESSOR

BY:

MSc: HASAN MUWAFAQ GHENI

WRITING AN ASSEMBLY LANGUAGE PROGRAM:

- Steps to write a program:
 - ✤ Analyze the problem.
 - ✤ Develop program Logic.
 - ♦ Write an Algorithm.
 - ✤ Make a Flowchart.
 - Write program Instructions using Assembly language of 8085.

Example 1: Program 8085 in Assembly language to add two 8-bit numbers (99H), (39H) and store 8-bit result in register C.

1. Analyze the problem.

Addition of two 8-bit numbers to be done.

2. Program Logic

Add two numbers.

Store result in register C.

10011001 (99H) A + 00111001 (39H) D 11010010 (D2H) C

- 3. Algorithm
 - 1. Get two numbers.
 - 2. Add them.
 - 3. Store result
 - 4. Stop

- Load 1st no. in register D
- Load 2nd no. in register E
- Copy register D to A
- Add register E to A
- Copy A to register C
- Stop processing

4. Make a flowchart

- Load 1st no. in register D
- Load 2nd no. in register E
- Copy register D to A
- Add register E to A
- Copy A to register C
- Stop processing

- 5. Assembly language program
- 1. Get two numbers.

Example 2: Program 8085 in Assembly language to add two 8-bit numbers (99H), (99H). Result can be more than 8-bits.

1. Analyze the problem.

Addition of two 8-bit numbers to be done.

- 2. Program Logic
- Result of addition of two 8-bit numbers can be 9-bit

10011001 (99H) A +10011001 (99H) B 100110010 (132H)

- The 9th bit in the result is called CARRY bit.
- Storing result in Register memory

- 3. Algorithm
- 1. Load two numbers in registers D, E
- 2. Add them.
- 3. Store 8 bit result in C.
- 4. Check CARRY flag
- 5. if the carry flag
- Store carry in B register
- 6. Stop.

Load registers D, E

- Copy register D to A
- Add register E to A

Copy A to register C

• Use Conditional Jump instructions Stop processing

- Clear register B
- Increment B
- Stop processing

4. Make a Flowchart

5. Assembly language program

Load registers D, E
Copy register D to A
Add register E to A
Copy A to register C
Use Conditional Jump instructions Stop processing
Clear register B
Increment B
Stop processing

_		
]	MVI D, 2H	
]	MVI E. 3H	
	MOV A, D	
	ADD E	
]	MOV C, A	
	JNC END	
	MVIB, 0H	
]	INR B	
	JNC END	

Example 3: The following have been executed by an 8085

Microprocessor. Write down the sequence of the process with

explain of each step.

Address (Hex)	8085 Instruction
5011	LXI B, 11FF
5013	DCX B
5014	MVI B, 00
5015	DCR B
5016	MVI H, A1
5018	INR H

Flag register

Example 4: write down the sequence of the instruction (till HLT instruction) if the program begin with the location 1FFH

Address	(Hex)	80)85 Instru	iction					
1FF5		Х	XRA						
1FF6		L	LXI						
1FF9		P	PCHL						
1FFA		Н	HLT						
1FFB		L	XI H,210	0 H					
1FFE		А	NI 00						
2000			LXI H, FFFF H						
2003	2003 INX H								
2004	JZ 2100								
2100	HLT								
2103	LXI H, IFFF H								
2103	MOV A,M								
2104	INR A								
2105	HLT								
S	Z	Х	AC	X	Р	Х	CY		

Flag register

Note: This example solve in the class.

Example 5: The following have been executed by an 8085 Microprocessor. Write down the sequence of the process with explain of each step. From which address the next instruction be fetched?

Address (Hex)	8085 II	nstruction	1					
6010		LXI H	, 8A79 I	Н					
6013		MOV	MOV A, L						
6015		ADD I	H						
6016		DAA	DAA						
6017		MOV	MOV H,L						
6018		PCHL	PCHL						
S	Ζ	Х	AC	Х	Р	Х	СҮ		

Flag register

Note: This example solve in the class.