Importance of phase diagrams

- > There is a strong correlation between microstructure and mechanical properties.
- > Microstructure is determined from phase diagram.
- ➤ Phase diagrams provide valuable information about melting, casting, crystallization.

phase diagram terminology

Component	pure metals and/or compounds of which an alloy is composed
System	The series of possible alloys consisting of the same components but without regard to alloy composition
Solubility limit	maximum concentration of solute atoms that may dissolve in the solvent to form a solid solution
Phase	a homogeneous portion of a system that has uniform physical and chemical characteristics.
Microstructure	microstructure is characterized by the number of phases present, their proportions, and the manner in which they are distributed or arranged.

Types of phase diagrams

1. Binary Isomorphous

complete liquid and solid solubility of the two components

Composition axis Temperature axis

Points

Melting point of Cu: 1085

Melting point of Ni: 1453

Lines

Liquidus line: the line between L and L+ α

Solidus line: the line between L+ α and α

Cooling curves

Go to Settings to activate Windows.

Interpretation of phase diagrams

1. Phase present

Locate this points and find the existing phases:

Α	60 Wt% Ni , 1100
В	35 Wt% Ni , 1250
C	70 Wt% Ni , 1500

Α	α
В	L+α
C	L

Interpretation of phase diagrams

2. Phase composition

"The concentrations of the components"

- ➤ If there is only single phase, then the procedure is simple. Just drop a vertical line from the point over the composition axis and read the concentration.
- ➤ In two phase regions: follow the procedure below
- 1. A tie line is constructed.
- 2. Determine the intersections with each boundary.
- Perpendiculars are dropped from these intersections to the horizontal composition axis, from which the composition of each of the respective phases is read.

3. Phase amounts

- ➤ If there is only single phase, then the alloy is composed completely from this phase.
- ➤ In two phase regions: follow the procedure below (lever rule)
- 1. A tie line is constructed.
- 2. The overall composition is located on tie line.
- 3. Drop the intersections and the overall composition over the composition axis to determine Co, Cl and $C\alpha$.
- 4. Use the following formula to determine each phase amount.

For liquid phase

$$W_L = \frac{S}{R+S} \qquad W_L = \frac{C_\alpha - C_0}{C_\alpha - C_L}$$

$$W_L = \frac{C_\alpha - C_0}{C_\alpha - C_L}$$

For solid phase

$$W_{\alpha} = \frac{R}{R+S}$$

$$=\frac{C_0-C_L}{C_\alpha-C_L}$$

Go to Settings to activate Windows.

Example

$$C_L = 31.5$$
; $C_o = 35$; $C_{\alpha} = 42.5$

$$C_l = \frac{C_{\alpha} - C_o}{C_{\alpha} - C_l} = \frac{42.5 - 35}{42.5 - 31.5} = 0.68$$

$$C_{\alpha} = \frac{C_o - C_l}{C_{\alpha} - C_l} = \frac{35 - 31.5}{42.5 - 31.5} = 0.32$$

Go to Settings to activate Windows.

Development of microstructure

Activate Windows
Go to Settings to activate Windows.