The Heat (Enthalpy) of Combustion:

-An older method of calculating enthalpy changes when chemical reactions occur is via standard heats (enthalpies) of combustion $\left(\Delta \widehat{H}_{c}^{\circ}\right)$.

The conventions used with the standard heats of combustion are as follows:
-The compound is oxidized with oxygen or some other substance to the products $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$, and so on.

- The reference conditions are still $25^{\circ} \mathrm{C}$ and 1 atm .
- Stoichiometric quantities react completely .

The rationale is that if a compound has a higher heat of combustion, it can release more energy than other compounds during combustion and would be easier to incinerate.

Example.4.3. Roasting of Iron pyrite Ore:

An iron pyrite ore containing $85.0 \% \mathrm{FeS}_{2}$ and 15.0% gangue (inert dirt, rock, etc.) is roasted with an amunt equal to 200% excess air according the reaction

$$
4 \mathrm{FeS}_{2}+11 \mathrm{O}_{2}==>2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{SO}_{2}
$$

in order to produce SO_{2}. All the gangue plus the $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and unreacted FeS_{2} end up in the solid waste product (cinder). Analysis shows the cinder contains 4.0% FeS_{2}. Determine the heat transfer per kilogram of ore to keep the product stream at $25^{\circ} \mathrm{C}$ if the entering stream streams are at $25^{\circ} \mathrm{C}$ Assume that pressure is constant at 1 atm

The heat transfer required is calculated form the energy balance equation. Assuming $\Delta \mathrm{K}=\Delta \mathrm{P}=\mathrm{W}_{\mathrm{S}}=0$, then

$$
\mathrm{Q}=\Delta \mathrm{H}=\Sigma \mathrm{H}_{\text {out }}-\Sigma \mathrm{H}_{\mathrm{in}}
$$

The total enthalpy at the inlet is:

$$
\Sigma \mathrm{H}_{\mathrm{in}}=\left(\mathrm{H}_{\text {gangue }}+\mathrm{H}_{\mathrm{FeS} 2}+\mathrm{H}_{\mathrm{N} 2}+\mathrm{H}_{\mathrm{O} 2}\right)_{1}
$$

The total enthalpy at the outlet is:

$$
\Sigma \mathrm{H}_{\mathrm{out}}=\left(\mathrm{H}_{\mathrm{SO} 2}+\mathrm{H}_{\mathrm{O} 2}+\mathrm{H}_{\mathrm{N} 2}+\mathrm{H}_{\text {gangue }}+\mathrm{H}_{\mathrm{Fe} 2 \mathrm{O} 3}+\mathrm{H}_{\mathrm{FeS} 2}\right)_{2}
$$

Hence,

$$
\begin{aligned}
\mathrm{Q}=\left(\mathrm{H}_{\mathrm{SO} 2}+\mathrm{H}_{\mathrm{O} 2}+\mathrm{H}_{\mathrm{N} 2}\right. & \left.+\mathrm{H}_{\text {gangue }}+\mathrm{H}_{\mathrm{Fe} 2 \mathrm{O} 3}+\mathrm{H}_{\mathrm{FeS} 2}\right)_{2} \\
& -\left(\mathrm{H}_{\text {gangue }}+\mathrm{H}_{\mathrm{FeS} 2}+\mathrm{H}_{\mathrm{N} 2}+\mathrm{H}_{\mathrm{O} 2}\right)_{1}
\end{aligned}
$$

Since the amount of N_{2} and gangue are the same at the inlet and out let and the there are no changes in T and P conditions at the inlet and outlet, then

$$
\left(\mathrm{H}_{\text {gangue }}\right)_{1}=\left(\mathrm{H}_{\text {gangue }}\right)_{2} \text { and }\left(\mathrm{H}_{\mathrm{N} 2}\right)_{1}=\left(\mathrm{H}_{\mathrm{N} 2}\right)_{2}
$$

And the heat transfer equation becomes,

$$
\mathrm{Q}=\left(\mathrm{H}_{\mathrm{SO} 2}+\mathrm{H}_{\mathrm{O} 2}+\mathrm{H}_{\mathrm{Fe} 2 \mathrm{O} 3}+\mathrm{H}_{\mathrm{FeS} 2}\right)_{2}-\left(\mathrm{H}_{\mathrm{FeS} 2}+\mathrm{H}_{\mathrm{O} 2}\right)_{1}
$$

From Table F.1,

$$
\begin{aligned}
& \left(\hat{\mathrm{H}}_{\mathrm{f}}{ }^{\mathrm{o}}\right)_{\mathrm{FeS} 2}=-177.9 \mathrm{~kJ} / \mathrm{mol} \\
& \left(\hat{\mathrm{H}}_{\mathrm{f}}{ }^{\circ}\right)_{\mathrm{Fe} 2 \mathrm{O} 3}=-822.156 \mathrm{~kJ} / \mathrm{mol} \\
& \left(\hat{\mathrm{H}}_{\mathrm{f}}{ }^{\circ}\right)_{\mathrm{SO} 2}=-296.90 \mathrm{~kJ} / \mathrm{mol} \\
& \left(\hat{\mathrm{H}}_{\mathrm{f}}{ }^{\circ}\right)_{\mathrm{O} 2}=0.00 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

These are the specific enthalpies at $25^{\circ} \mathrm{C}$. The actual enthalpy at the given temperature condition is:

$$
\hat{\mathrm{H}}=\hat{\mathrm{H}}_{\mathrm{f}}^{\circ}+\int_{\mathrm{T}_{\mathrm{R}}}^{\mathrm{T}} C_{P} d T
$$

Since the actual temperature is also at $25^{\circ} \mathrm{C}$, then

$$
\hat{\mathrm{H}}=\hat{\mathrm{H}}_{\mathrm{f}}{ }^{\circ}
$$

The total enthalpy of each component at the inlet and outlet is determined as:

$$
\mathrm{H}=\mathrm{n} \hat{\mathrm{H}}=\mathrm{n} \hat{\mathrm{H}}_{\mathrm{f}}{ }^{\mathrm{o}}
$$

The molar amount of each component can be obtained thru material balances.

From excess air information:

$$
\begin{aligned}
& \text { Total } \mathrm{O}_{2} \text { in }=5.8437 \mathrm{kmol} \\
& \text { Total } \mathrm{N}_{2} \text { in }=21.983 \mathrm{kmol}
\end{aligned}
$$

Gangue Balance:

$$
\begin{aligned}
& \mathrm{m}_{1}=15.0 \mathrm{~kg} \\
& \mathrm{n}_{3}=21.983 \mathrm{kmol}
\end{aligned}
$$

N_{2} Balance:

S Balance (kmol)
Fe Balance (kmol)
$2(85.0 / 120.0)=\mathrm{n}_{1}+\left(\mathrm{m}_{3} / 120.0\right)(2)$
O_{2} Balance (kmol)
$(85.0 / 120.0)=\left(\mathrm{m}_{2} / 159.02\right) 2+\left(\mathrm{m}_{3} / 120.0\right)$
$5.8437=\mathrm{n}_{2}+\mathrm{n}_{1}+(\mathrm{m} 2 / 159.02)(1.5)$

Also,

$$
\mathrm{m}_{3} /\left(15.0+\mathrm{m}_{2}+\mathrm{m}_{3}\right)=0.04
$$

Solving the last 4 equations simultaneously,
$\mathrm{Fe}_{2} \mathrm{O}_{3}: \quad \mathrm{m}_{2}=54.63 \mathrm{~kg}====>0.342 \mathrm{kmol}$
$\mathrm{FeS}_{2}: \quad \mathrm{m}_{3}=2.90 \mathrm{~kg}====>0.0242 \mathrm{kmol}$
$\mathrm{SO}_{2}: \quad \mathrm{n}_{1}=1.368 \mathrm{kmol}$
$\mathrm{O}_{2}: \quad \mathrm{n}_{2}=3.938 \mathrm{kmol}$

Solving for the total enthalpy of the inlet:

$$
\begin{aligned}
\Sigma \mathrm{H}_{\mathrm{in}}= & (85.0 / 120.0 \mathrm{kmol})(-177.9 \mathrm{~kJ} / \mathrm{mol})(1000 \mathrm{~mol} / \mathrm{kmol}) \\
& +(5.8437)(0) \\
\Sigma \mathrm{H}_{\mathrm{in}}= & \mathbf{1 2 6}, 007 \mathbf{k J}
\end{aligned}
$$

Solving for the total enthalpy of the outlet:

$$
\begin{aligned}
\Sigma \mathrm{H}_{\text {out }}= & (1.368)(-296.90)(1000)+(0.0242)(-177.90)(1000) \\
& +(1.368)(-296.90)(1000) \\
\Sigma H_{\text {out }}= & -\mathbf{6 9 1}, \mathbf{6 4 1} \mathbf{~ k J}
\end{aligned}
$$

Solving for Q :
$\mathrm{Q}=-\mathbf{6 9 1}, 641-(-126,007)=\mathbf{- 5 6 5 , 6 3 4} \mathbf{k J}$ per 100 kg of ore

Per kg of ore:

$Q=-\mathbf{5 , 6 5 6} \mathbf{k J}$ per kg of ore

The negative sign indicates that meat must be removed during the process in order to maintain the temperature at $25^{\circ} \mathrm{C}$.

Example.4.3.

Methane is oxidised with air to produce formaldehyde as per the following equation: $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2} \rightarrow \mathrm{HCHO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta H_{R}^{\circ}=-283.094 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

100 mol of methane are fed to the reactor at 311 k , air is used 50% excess and supplied at 373 k . If the percent conversion is 60 , calculate the heat that must be removed for the product strream to be at 478 k .

Data :

Component	$\mathbf{C}_{\mathbf{p m}}^{\mathbf{o}(\mathbf{3 1 1} \mathbf{- 2 9 8} \mathbf{K})}$	$\mathbf{C}_{\mathbf{p m}}^{\mathbf{o}(\mathbf{4 7 8} \mathbf{- 2 9 8} \mathbf{K})}$
$\mathbf{C H}_{4}$	36.044	40.193
$\mathrm{~N}_{2}$	-	29.2866
O_{2}	-	30.0821
$\mathrm{HCHO}_{\mathrm{H}_{2} \mathrm{O}}$	-	41.2902

$\mathrm{C}_{\mathrm{pm}}^{\mathrm{o}}$ for air $(373-298 \mathrm{~K})=29.2908 \mathrm{~kJ} /(\mathrm{kmol} \cdot \mathrm{K})$
Solution : Basis : 100 mol of methane fed to the reactor

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCHO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}}=-283.094 \mathrm{~kJ} / \mathrm{mol}=-283094 \mathrm{~J} / \mathrm{mol}
$$

From the reaction : $1 \mathrm{kmol} \mathrm{CH}_{4} \equiv 1 \mathrm{kmol} \mathrm{O}_{2}$. Therefore,
$\begin{aligned} & \text { Theoretical } \mathrm{O}_{2} \text { requirement } \\ & \text { for } 100 \mathrm{kmol} \mathrm{CH}_{4}\end{aligned}=\frac{1}{1} \times 100=100 \mathrm{~mol}$
Given : Air is used 50% in excess of theoretical requirement. We know that $\%$ excess air $=\%$ excess O_{2}. Therefore, $\%$ excess $\mathrm{O}_{2}=50$.

$$
\begin{aligned}
\mathrm{O}_{2} \text { in the supplied air } & =100\left(1+\frac{50}{100}\right)=150 \mathrm{~mol} \\
\text { Air supplied } & =150 \times \frac{100}{21}=714.3 \mathrm{~mol} \\
\mathrm{~N}_{2} \text { in the supplied air } & =714.3-150=564.3 \mathrm{~mol}
\end{aligned}
$$

Given: Conversion of $\mathrm{CH}_{4}=60$

$$
\mathrm{CH}_{4} \text { reacted }=0.60 \times 100=60 \mathrm{~mol}
$$

$\begin{aligned} & \mathrm{HCHO} \text { produced from } \\ & 60 \mathrm{kmol} \mathrm{CH}_{4} \text { reacted }\end{aligned}=\frac{1}{1} \times 60=60 \mathrm{~mol}$
Similarly,

$$
\begin{aligned}
\mathrm{H}_{2} \mathrm{O} \text { produced } & =\frac{1}{1} \times 60=60 \mathrm{~mol} \\
\mathrm{O}_{2} \text { reacted } & =\frac{1}{1} \times 60=60 \mathrm{~mol}
\end{aligned}
$$

O_{2} unreacted $=\mathrm{O}_{2}$ in air $-\mathrm{O}_{2}$ reacted $=150-60=90 \mathrm{~mol}$
$\Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}}$ for $60 \mathrm{~mol} \mathrm{CH}_{4}$ reacted $=60 \times(-283094)=-16985640 \mathrm{~J}$

Fig. Ex 6.57
Enthalpy of reactants $\sum \mathrm{H}_{\mathrm{R}}$ over $298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right)$.

$$
\begin{aligned}
& \Sigma \mathrm{H}_{\mathrm{R}}=\mathrm{n}_{\mathrm{CH}_{4}} \cdot \mathrm{C}_{\mathrm{p} \mathrm{~m}_{\mathrm{CH}_{4}}^{0}}^{0}\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)+\mathrm{n}_{\text {air }} \cdot \mathrm{C}_{\mathrm{pm} \text { air }}^{0}\left(\mathrm{~T}_{1}^{\prime}-\mathrm{T}_{0}\right) \\
& =100 \times 36.044 \times(311-298)+714.3 \times 29.2908 \times(373-298) \\
& =1616038.6 \mathrm{~J} \\
& \Sigma \mathrm{H}_{\mathrm{p}}=\text { Enthalpy of products over } 298 \mathrm{~K}\left(25^{\circ} \mathrm{C}\right) \\
& \Sigma \mathrm{H}_{\mathrm{p}}=\left[\mathrm{n}_{\mathrm{CH}_{4}} \cdot \mathrm{C}_{\mathrm{pm}}^{\mathrm{CH}_{4}} \mathrm{o}+\mathrm{n}_{\mathrm{N}_{2}} \cdot \mathrm{C}_{\mathrm{p} \mathrm{~m}_{\mathrm{N}_{2}}}^{\mathrm{o}}+\mathrm{n}_{\mathrm{O}_{2}} \cdot \mathrm{C}_{\mathrm{pm}}^{\mathrm{O}_{2}} \mathrm{o}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =[40 \times 40.193+564.3 \times 29.2866+90 \times 30.0821 \\
& +60 \times 41.2902+60 \times 34.2396] \times(478-298) \\
& =4567198.6 \mathrm{~J} \\
& \Delta \mathrm{H}=\text { Net enthalpy change }=\text { Heat to be removed } \\
& =\Sigma H_{p}+\sum \Delta H_{R}^{0}-\sum H_{R} \\
& =4567198.6+(-16985640)-1616038.6 \\
& =-14034480 \mathrm{~J} \\
& =-14034.48 \mathrm{~kJ}
\end{aligned}
$$

Heat to be removed $=\mathbf{1 4 0 3 4 . 4 8} \mathbf{k J}$

