
"HIGHWAY ENGINEERING" 3 rd Grade
(تصميم الطرق الاسفلتية المرنة (Thickness Design of Flexible Pavement)(

Prepared by The Senior Lecturer: Mr. Tameem Mohammed Al Musawi

Thickness Design of Flexible Pavement

By different methods [due to: methods pf traffic analysis, failure definition (structural \& users), evaluation of properties, \& environmental effects].

1) AASHO (AASHTO) Guide method.
2) T. A. I. method (The asphalt institute method).
3) N. C. S. A. (National Crushed Stone Association).

AASHTO method:

D or h $=f\left(W_{t 18}, \rho_{t}, S, \& R\right)$
$\mathrm{SN}=\mathrm{f}(\mathrm{S}, \mathrm{R})$
Note: h (for each layer) > max. size of agg. * 2

Where:
a) $\quad \mathrm{W}_{\mathrm{t} 18}=$ Equivalent (18kips) ($\approx 8.2 \mathrm{ton}$) single axle applications.
$\mathrm{W}_{\mathrm{t} 18}=\mathrm{f}\left(\right.$ axle type, axle load magnitude, ρ_{t}, design life, \& SN)
$\mathrm{W}_{\mathrm{t} 18}=\Sigma \mathrm{T} * \mathrm{~A} * \mathrm{~F} \quad \mathrm{Wt}_{18}=\mathrm{T} \times \Sigma \mathrm{A} \times \mathrm{F}$
Where:

$$
\begin{aligned}
& \mathrm{T}=\text { Future trucks } / \text { Day } / \text { Direction }=(\text { Future ADT * \%Truck * D.D }) \\
& \mathrm{A}=\text { Axle } / \text { Truck } \\
& \mathrm{F}=\text { Damage factor }
\end{aligned}
$$

b) $\rho_{t}=$ Terminal Serviceability:

Lowest serviceability allowed at the end of design period before resurfacing or reconstruction.

By:
Arbitrary scale (named present serviceability index: 5 for best riding quality, and 0 for worst)
$\rho_{\mathrm{t}}=2.5$ for main highway
$\rho_{\mathrm{t}}=2.0$ for secondary highway
c) $\mathrm{S}=\mathrm{Road}$ bed support value
d) $R=$ Regional factor
e) $\mathrm{SN}=$ Structural number:

Index number derived from analysis of traffic $\left(\mathrm{W}_{\mathrm{t} 18}\right)$, road bed support number (S), regional factor (R) [from monograph], which may be converted to thickness of various layers by using suitable layer coefficient.

Case (2) Ideal Arrangement
 بالانج ويقرب لأقرب نصف ("0.5).

For case (1) General:
$a_{1}=$ Layer coefficient for Surface
$\mathrm{D}_{1}=$ Thickness of Surface (inch)
$\mathrm{a}_{2}=$ Layer coefficient for Base
$\mathrm{D}_{2}=$ Thickness of Base (inch)
$a_{3}=$ Layer coefficient for Subbase
$\mathrm{D}_{3}=$ Thickness of Subbase (inch)

Design monographs and tables: Yoder (Table 4.9 P.164, 165), (Fig. 15.1 P.509), (Table 15.1 P.510), (Fig. 15.3 P.514, 515), (Fig. 15.5 P.516)

Ex.:
A main rural highway has been built or designed for (200) daily 18-kips single axle load repetition. Regional factor $(R)=1.2 \&$ the characteristics of pavement materials as following:

Subgrade	\rightarrow	C. B. R. $=5 \%$	(Plastic clay)
Subbase	\rightarrow	C. B. R. $=20 \%$	(Sand-gravel)
Base	\rightarrow	C. B. R. $=80 \%$	(Crushed stone)
Surface	\rightarrow	E $=4.3^{*} 10^{5} \mathrm{psi}$	(Asphalt concrete)

Sol.:

From graph (P.514, 515)
Surface $\quad a_{1}=0.42 \quad$ (Modulus $E=4.3$)
Base $\quad a_{2}=0.13 \quad$ (C. B. R. $=80 \%$)
Subbase
$\mathrm{a}_{3}=0.095$
(C. B. R. $=20 \%$)
$\mathrm{SN}_{1}=\mathrm{a}_{1} \mathrm{D}_{1}$
$\mathrm{W}_{\mathrm{t} 18}=200$
From graph (P.516)
قيم (C. B. R) للطبقة التي قبلها

$$
\begin{array}{lll}
\mathrm{S}_{1}(@ 80 \% \mathrm{C} . \mathrm{B} . \mathrm{R} .)=8.5 & \rightarrow & \mathrm{SN}_{1}=1.95 \\
\mathrm{~S}_{2}(@ 20 \% \text { C.B.R. })=6.2 & \rightarrow & \mathrm{SN}_{2}=2.82 \\
\mathrm{~S}_{3}(@ 5 \% \text { C.B.R. })=4 & \rightarrow & \mathrm{SN}_{3}=3.78 \\
\mathrm{SN}_{1}=\mathrm{a}_{1} \mathrm{D}_{1} & & \\
1.95=0.42 * \mathrm{D}_{1} & \rightarrow & \mathrm{D}_{1}=4.64^{\prime \prime} \quad \text { use } \mathrm{D}_{1}=5^{\prime \prime} \\
\mathrm{SN}_{2}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \mathrm{D}_{2} & & \\
2.82=0.42 * 5+0.13 * \mathrm{D}_{2} & \rightarrow & \mathrm{D}_{2}=5.54^{\prime \prime} \quad \text { use } \mathrm{D}_{2}=6^{\prime \prime} \\
\mathrm{SN} 3=\mathrm{a} 1 \mathrm{D} 1+\mathrm{a} 2 \mathrm{D} 2+\mathrm{a} 3 \mathrm{D} 3 & & \\
3.78=0.42 * 5+0.13 * 6+0.095^{\prime} \mathrm{D}_{3} \rightarrow & \mathrm{D} \quad 3=9.47^{\prime \prime} \text { use } \mathrm{D}_{3}=9.5^{\prime \prime}
\end{array}
$$

H.W.:

Secondary highway, ADT $(1994)=400 \mathrm{vph}$, truck $=40 \%$, D. D. $=50 \%$, annual rate of traffic growth $=6 \%$, design life $=20$ years, wet (saturated road bed).

Truck type:

Materials

Asphalt concrete wearing course
Asphalt concrete leveling course
Crushed stone base
Subbase
Subgrade

Properties

M. S. $\quad \geq 800 \mathrm{~kg}$
M. S.
$\geq 700 \mathrm{~kg}$
C. B. R.

80 \%
C. B. R.

30 \%
C. B. R.

2\%

Determine thickness of layers in (cm)
Note: let $\mathrm{D}_{1}=8 \mathrm{~cm}$
Ans.: D1 = 8cm (3"), D2 = 11 cm (4.5"), D3 = 12cm (5"), D4 = 57cm (22.5")
$1 \mathrm{~kg}=2.20462 \mathrm{lb}$
$\mathrm{FADT}=\mathrm{CADT} \times(1+\mathrm{r})^{\mathrm{x}+\mathrm{n}} ; \quad \rho_{\mathrm{t}}=2.0$
n : design life (20-25) years
r: annual rate of traffic growth (6-9\%)
x : years of constructions ($\simeq 2$ years)
$(1+r)^{\mathrm{X}+\mathrm{n}}$: Traffic Projection Factor (TPF)
$\mathrm{FADT}=400 \times(1+0.06)^{2+20}=1441 \mathrm{vpd}$
$\mathrm{T}=\mathrm{FADT} \times \%$ Trucks $\times \mathrm{D} . \mathrm{D}=1441 \times 0.4 \times 0.5=288$ Trucks/day/direction
Note 1: two layers on the surface (wearing + leveling) with two stability values, in this case we shall consider them as one layer with critical stability (the minimum value $=\mathbf{7 0 0} \mathbf{~ k g}$) in order to determine the layer coefficient \mathbf{a}_{1}
$\mathrm{M} . \mathrm{S}=700 \mathrm{~kg} \times 2.205=1544 \mathrm{Ib}$
$\mathrm{a}_{1}=0.38 \quad$ from chart page (08-5)
$\mathrm{A}=\mathrm{axle} /$ truck $=1$ for single and tandem
F1 for 13 kips single axle $=0.27 \quad$ chart page $(08-10)$
F2 for 40 kips tandem axle $=2.15 \quad$ chart page $(08-10)$
$\mathrm{W}_{\mathrm{t} 18}=\mathrm{T} \times \sum \mathrm{A} \times \mathrm{F}=288 \times(1 \times 0.27+1 \times 2.15)=700$ daily
$\mathrm{a}_{2}=0.13 \quad ; \mathrm{a}_{3}=0.11 \quad$ from chart pages $(08-5) \&(08-6)$
$S_{1}=8.5, \quad S_{2}=6.75, \quad S_{3}=2.5 \quad$ from chart page (08-7)
Note 2: wet saturated roadbed \qquad From table in page (08-7) we shall consider the value of regional factor $(\mathbf{R}=\mathbf{4 . 0})$ the minimum critical value
$\mathrm{SN}_{1}=2.8, \quad \mathrm{SN}_{2}=3.6, \quad \mathrm{SN}_{3}=6 \quad$ from chart page (08-9)
$\mathrm{SN}_{1}=\mathrm{a}_{1} \mathrm{D}_{1} \longrightarrow \mathrm{D}_{1}=7.5^{\prime \prime}$
$\mathrm{SN}_{2}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \mathrm{D}_{2}$
$D_{2}=6 "$
$\mathrm{SN}_{3}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \mathrm{D}_{2}+\mathrm{a}_{3} \mathrm{D}_{3} \longrightarrow \mathrm{D}_{3}=22^{\prime \prime}$

Note 3: D_{1} shall be divided to D wearing $=3^{\prime \prime} \& \mathrm{D}$ leveling $=4.5^{\prime \prime}$

Surface	$D_{1}=3^{\prime \prime}=8 \mathrm{~cm}$
Leveling	$D_{2}=4.5^{\prime \prime}=11 \mathrm{~cm}$
Base	$D_{3}=6^{\prime \prime}=15 \mathrm{~cm}$
Sub-base	$D_{4}=22^{\prime \prime}=56 \mathrm{~cm}$

Ex 2: Flexible pavement of a secondary hyw consist of the following layers. Find the number of trucks per day per direction (T) which can travel on the haw without any failure. The effective axles/100 trucks as below $(\mathrm{R}=4)$

Axle type	No. of axles/100 trucks
Single 16 kips	30
Tandem 26 kips	40

Materials	Layer thickness (in)	Layer coefficient (a)	S value
Asphaltic Concrete	4	0.42	7
Sand-gravel	6	0.1	3

SOLUTION:

$\rho_{\mathrm{t}}=2.0$
A_{1} for 16 kips single axle load $=30 / 100=0.3 ; \mathrm{F}_{1}=0.61$ chart $\mathrm{p}(08-10)$
A_{2} for 26 kips tandem axle load $=40 / 100=0.4 ; \mathrm{F}_{2}=0.36 \operatorname{chart} \mathrm{p}(08-10)$
$\mathrm{W}_{\mathrm{t} 18}=\mathrm{T} \times \sum \mathrm{A} \times \mathrm{F}=\mathrm{T} \times(0.3 \times 0.61+0.4 \times 0.36)=0.327 \mathrm{~T}$
$\mathrm{SN}_{1}=\mathrm{a}_{1} \mathrm{D}_{1}=0.42 \times 4=1.68 ; \mathrm{S}_{1}=7$
$\mathrm{SN}_{3}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \mathrm{D}_{2}+\mathrm{a}_{3} \mathrm{D}_{3}=1.68+6 \times 0.1=2.28 ; \mathrm{S}_{3}=3$
From chat in page (08-9)
$\mathrm{W}_{\mathrm{t} 18}=10$ ESAL DAILY
$\mathrm{W}_{\mathrm{t} 18}=0$
USE $\mathrm{W}_{\mathrm{t} 18}=10$ DAILY
Sub in eq. $1 \longleftrightarrow \mathrm{~T}=31$ Trucks/day/direction
Ex 3: In flexible pavement design of a road section by AASHTO method, the structural numbers needed for pavement layers were found to be:

$$
\mathrm{SN}_{1}=1.5, \mathrm{SN}_{2}=3.5, \mathrm{SN}_{3}=4.2
$$

Check the adequacy of the following design $\&$ if it is not adequate redesign it.

Layer	Layer Coefficient (a)	Thickness (in)
Surface	0.42	4
Base	0.14	12
Subbase	0.11	6

SOLUTION:

$$
\mathrm{SN}_{1}=\mathrm{a}_{1} \mathrm{D}_{1} \Longleftrightarrow \mathrm{D}_{1}=1.5 / 0.42=3.57^{\prime \prime}=4^{\prime \prime} \text { O.K }
$$

$$
\mathrm{SN}_{2}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \mathrm{D}_{2} \Longleftrightarrow \mathrm{D}_{2}=(3.5-4 \times 0.42) / 0.14=13^{\prime \prime} \text { NOT O.K }
$$

$$
\text { USE } D_{2}=13^{\prime \prime}
$$

$$
\begin{array}{r}
\mathrm{SN}_{3}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \mathrm{D}_{2}+\mathrm{a}_{3} \mathrm{D}_{3} \longleftrightarrow \mathrm{D}_{3}=(4.2-(4 \times 0.42+13 \times 0.14)) / 0.11= \\
6.4^{\prime \prime}=6.5^{\prime \prime} \text { NOT O.K USE D } 3=6.5^{\prime \prime}
\end{array}
$$

Ex 4: A main highway with the following information: $\mathrm{DHV}=100 \mathrm{vph}$, $\%$ Trucks $=40 \%$, D.D $=60 \%$, and the type of trucks as follows:

Design the flexible pavement (by AASHTO) method using the following information: $(\mathrm{R}=4)$
Asphalt Mix, Stability $>=5 \mathrm{kN}$
Subbase, $\mathrm{CBR}=40 \%$
Subgrade, $\mathrm{CBR}=10 \%$

SOLUTION:
$\mathrm{DHV}=0.15 \mathrm{ADT} \longrightarrow \mathrm{ADT}=100 / 0.15=667 \mathrm{vpd}$
$\mathrm{FADT}=\mathrm{CADT} \times(1+\mathrm{r})^{\mathrm{x}+\mathrm{n}} ; \quad \rho_{\mathrm{t}}=2.5($ main hyw $)$
Assume:
n : design life (20-25) years $\mathbf{=} \mathbf{2 0}$ years
r: annual rate of traffic growth $(6-9 \%)=\mathbf{6 \%}$
x : years of constructions ($\simeq 2$ years)
FADT $=667 \times(1+0.06)^{22}=2404 \mathrm{vpd}$
$\mathrm{T}=\mathrm{FADT} \times \%$ Trucks \times D.D $=2404 \times 0.4 \times 0.6=577$ Truck/day/direction

Type A : 30\%

$\mathrm{A}_{1}=0.3 \quad, \quad \mathrm{~F}_{1}=0.4$
$\mathrm{A}_{2}=0.3 \quad, \quad \mathrm{~F}_{2}=0.365$

$\mathrm{W}_{\mathrm{t} 18}=\mathrm{T} \times \sum \mathrm{A} \times \mathrm{F}=577 \times(0.3 \times 0.4+0.3 \times 0.365+0.7 \times 1.49+0.7 \times 1.11)$

$$
\text { = } 1183 \text { ESAL DAILY }
$$

M.S $=500 \times 2.205=1102.5 \mathrm{Ib}$
$\mathrm{a}_{1}=0.31, \mathrm{a}_{3}=0.12 \quad$ from chart pages $(08-5) \&(08-6)$
$S_{1}=7.2 \quad, \quad S_{3}=5.2 \quad$ from chart page (08-7)
$\mathrm{SN}_{1}=4 \quad$ from chart page (08-9)
$\mathrm{SN}_{1}=\mathrm{a}_{1} \mathrm{D}_{1} \longrightarrow \mathrm{D}_{1}=4 / 0.31=12.9^{\prime \prime}=13^{\prime \prime}$
$\mathrm{SN}_{3}=5.1 \quad$ from chart page (08-9)
$\mathrm{SN}_{3}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \square_{2}+\mathrm{a}_{3} \mathrm{D}_{3}=\mathrm{D}_{3}=(5.1-0.31 \times 13) / 0.12=8.9^{\prime \prime}=9^{\prime \prime}$

Surface	$D_{1}=6 \prime \prime$
Leveling	$D_{2}=7 \prime \prime$
	$D_{3}=9 \prime$

Subgrade
Ex 5: A flexible pavement of main hyw consists of three layers as shown below. Find the number of trucks which can travel on it without failure. The effective axle per 1000 trucks $=150$ single axle (18kips) \& the regional factor $\mathrm{R}=1.5$

Layers	Layer thickness (D)	Layer Coefficient (a)	(S) Value
Asphalt Concrete	$4 "$	0.42	7
Crushed Stone	$6 "$	0.14	5
Sand-Gravel	$6 "$	0.1	3

$\rho_{\mathrm{t}}=2.5$ (main hyw)
$\mathrm{SN}_{1}=\mathrm{a}_{1} \mathrm{D}_{1}=0.42 \times 4=1.68 \quad, \quad \mathrm{~S}_{1}=7$
$\mathrm{SN}_{2}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \mathrm{D}_{2}=1.68+6 \times 0.14=2.52 \quad, \quad \mathrm{~S}_{2}=5$
$\mathrm{SN}_{3}=\mathrm{a}_{1} \mathrm{D}_{1}+\mathrm{a}_{2} \mathrm{D}_{2}+\mathrm{a}_{3} \mathrm{D}_{3}=2.52+0.1 \times 6=3.12, \quad \mathrm{~S}_{3}=3$
$\left(\mathrm{W}_{\mathrm{t} 18}\right)_{1}=18$ ESAL Daily
$\left(\mathrm{W}_{\mathrm{t} 18}\right)_{2}=30$ ESAL Daily
$\left(\mathrm{W}_{\mathrm{t} 18}\right)_{3}=23$ ESAL Daily
نختار دائمـا الاقل:
$\mathrm{W}_{\mathrm{t} 18}=18$ ESAL Daily
$18=\mathrm{T} \times \sum \mathrm{A} \times \mathrm{F}=\mathrm{T} \times\{(150 / 1000) \times 1\} \longmapsto \mathrm{T}=120$ Trucks/day/direction

