Republic of Iraq

Ministry of Higher Education & Scientific Research

Al-Mustaqbal University College

Department of Building & Construction Engineering Technology

"HIGHWAY ENGINEERING" 3rd Grade

((Thickness Design of Flexible Pavement الطرق الاسفلتية المرنة))

Prepared by The Senior Lecturer: Mr. Tameem Mohammed Al Musawi

Thickness Design of Flexible Pavement

By different methods [due to: methods pf traffic analysis, failure definition (structural & users), evaluation of properties, & environmental effects].

- 1) AASHO (AASHTO) Guide method.
- 2) T. A. I. method (The asphalt institute method).
- 3) N. C. S. A. (National Crushed Stone Association).

AASHTO method:

- D or $h = f(W_{t18}, \rho_t, S, \& R)$
- SN = f(S, R)

Note: h (for each layer) > max. size of agg. * 2

Where:

a) $W_{t18} =$ Equivalent (18kips) (\approx 8.2ton) single axle applications.

 $W_{t18} = f$ (axle type, axle load magnitude, ρ_t , design life, & SN)

 $W_{t18} = \Sigma T^*A^*F$ $Wt_{18} = T \times \Sigma A \times F$

Where:

T = Future trucks / Day / Direction = (Future ADT * %Truck * D.D)

A = Axle / Truck

F = Damage factor

b) ρ_t = Terminal Serviceability:

Lowest serviceability allowed at the end of design period before resurfacing or reconstruction.

By:

Arbitrary scale (named present serviceability index: 5 for best riding quality, and 0 for worst)

 $\rho_t = 2.5$ for main highway

 $\rho_t = 2.0$ for secondary highway

- c) S = Road bed support value
- d) R = Regional factor
- e) SN = Structural number:

Index number derived from analysis of traffic (W_{t18}), road bed support number (S), regional factor (R) [from monograph], which may be converted to thickness of various layers by using suitable layer coefficient.

Case (2) Ideal Arrangement

 (D_1) من المخطط (SN₁ = a₁ D₁) المطلوب (D₁) نستخرج (SN₁) من المخططات (P.509) و(a₁) من المخطط (P.514) نجد (D₁) بالانج ويقرب لأقرب نصف ("0.5).

For case (1) General:

$a_1 =$ Layer coefficient for Surface	D_1 = Thickness of Surface (inch)
$a_2 =$ Layer coefficient for Base	D_2 = Thickness of Base (inch)
a_3 = Layer coefficient for Subbase	D_3 = Thickness of Subbase (inch)

Design monographs and tables: Yoder (Table 4.9 P.164, 165), (Fig. 15.1 P.509), (Table 15.1 P.510), (Fig. 15.3 P.514, 515), (Fig. 15.5 P.516)

Ex.:

A main rural highway has been built or designed for (200) daily 18-kips single axle load repetition. Regional factor (R) = 1.2 & the characteristics of pavement materials as following:

Subgrade	\rightarrow	C. B. R. = 5%	(Plastic clay)
Subbase	\rightarrow	C. B. R. = 20%	(Sand-gravel)
Base	\rightarrow	C. B. R. = 80%	(Crushed stone)
Surface	\rightarrow	$E = 4.3 * 10^5 psi$	(Asphalt concrete)

Sol.:

From	graph (P.514	, 515)	
	Surface	$a_1 = 0.42$	(Modulus $E = 4.3$)
	Base	$a_2 = 0.13$	(C. B. R. = 80%)
	Subbase	$a_3 = 0.095$	(C. B. R. = 20%)

 $SN_1 = a_1 D_1$

 $W_{t18} = 200$

From graph (P.516)

(C. B. R.) للطبقة التي قبلها	قيم
------------------------------	-----

S_1 (@ 80% C.B.R.) = 8.5	\rightarrow	$SN_1 = 1.95$
S_2 (@ 20% C.B.R.) = 6.2	\rightarrow	$SN_2 = 2.82$
$S_3(@5\% C.B.R.) = 4$	\rightarrow	$SN_3 = 3.78$

$$SN_{1} = a_{1} D_{1}$$

$$1.95 = 0.42*D_{1} \qquad \Rightarrow \qquad D_{1} = 4.64" \text{ use } D_{1} = 5"$$

$$SN_{2} = a_{1} D_{1} + a_{2} D_{2}$$

$$2.82 = 0.42*5 + 0.13*D_{2} \qquad \Rightarrow \qquad D_{2} = 5.54" \text{ use } D_{2} = 6"$$

$$SN_{3} = a_{1} D_{1} + a_{2} D_{2} + a_{3} D_{3}$$

$$3.78 = 0.42*5 + 0.13*6 + 0.095*D_{3} \Rightarrow \qquad D_{3} = 9.47" \text{ use } D_{3} = 9.5"$$

H.W.:

Secondary highway, ADT (1994) = 400vph, truck = 40%, D. D. = 50%, annual rate of traffic growth = 6%, design life = 20 years, wet (saturated road bed).

Truck type:

51	40Kips	13Kips
Materials	Properties	
Asphalt concrete wearing course	M. S.	≥ 800 kg
Asphalt concrete leveling course	M. S.	≥ 700 kg
Crushed stone base	C. B. R.	80 %
Subbase	C. B. R.	30 %
Subgrade	C. B. R.	2%

Determine thickness of layers in (cm)

Note: let $D_1 = 8 \text{ cm}$

Ans.: D1 = 8cm (3"), D2 = 11cm (4.5"), D3 = 12cm (5"), D4 = 57cm (22.5") 1kg = 2.20462 lb

HOMEWORK SOLUTION: FLEXIBLE PAVEMENT

 $FADT = CADT \times {(1+r)}^{x+n} \hspace{0.2cm} ; \hspace{0.2cm} \rho_t = 2.0$

n: design life (20-25) years

r: annual rate of traffic growth (6-9%)

x: years of constructions ($\underline{\sim} 2$ years)

 $(1+r)^{x+n}$: Traffic Projection Factor (TPF)

FADT = $400 \times (1+0.06)^{2+20} = 1441$ vpd

T = FADT \times % Trucks \times D.D = 1441 \times 0.4 \times 0.5 = 288 Trucks/day/direction

Note 1: two layers on the surface (wearing + leveling) with two stability values, in this case we shall consider them as one layer with critical stability

(the minimum value = 700 kg) in order to determine the layer coefficient a_1

$$M.S = 700 \text{ kg} \times 2.205 = 1544 \text{ Ib}$$

 $a_1 = 0.38$ from chart page (08-5)

A = axle/truck = 1 for single and tandem

F1 for 13 kips single axle = 0.27 chart page (08-10)

F2 for 40 kips tandem axle = 2.15 chart page (08-10)

 $W_{t18} = T \times \sum A \times F = 288 \times (1 \times 0.27 + 1 \times 2.15) = 700$ daily

 $a_2 = 0.13$; $a_3 = 0.11$ from chart pages (08-5) & (08-6)

 $S_1 = 8.5$, $S_2 = 6.75$, $S_3 = 2.5$ from chart page (08-7)

Note 2: wet saturated roadbed From table in page (08-7) we shall consider the value of regional factor ($\mathbf{R} = 4.0$) the minimum critical value

 $SN_1 = 2.8$, $SN_2 = 3.6$, $SN_3 = 6$ from chart page (08-9) $SN_1 = a_1D_1 \implies D_1 = 7.5"$ $SN_2 = a_1D_1 + a_2D_2 \implies D_2 = 6"$ $SN_3 = a_1D_1 + a_2D_2 + a_3D_3 \implies D_3 = 22"$

Note 3: D₁ shall be divided to D wearing = 3" & D leveling = 4.5"

Ex 2: Flexible pavement of a secondary hyw consist of the following layers. Find the number of trucks per day per direction (T) which can travel on the hyw without any failure. The effective axles/100 trucks as below (R = 4)

Axle type	No. of axles/100 trucks
Single 16 kips	30
Tandem 26 kips	40

Materials	Layer thickness (in)	Layer coefficient (a)	S value
Asphaltic Concrete	4	0.42	7
Sand-gravel	6	0.1	3

SOLUTION:

 $\rho_{t} = 2.0$

A1 for 16 kips single axle load = 30/100 = 0.3; F1 = 0.61 chart p (08-10)

A₂ for 26 kips tandem axle load = 40/100 = 0.4; F₂ = 0.36 chart p (08-10)

 $W_{t18} = T \times \sum A \times F = T \times (0.3 \times 0.61 + 0.4 \times 0.36) = 0.327 T \dots (1)$

 $SN_{1} = a_{1}D_{1} = 0.42 \times 4 = 1.68 ; S_{1} = 7$ $SN_{3} = a_{1}D_{1} + a_{2}D_{2} + a_{3}D_{3} = 1.68 + 6 \times 0.1 = 2.28 ; S_{3} = 3$ From chat in page (08-9) $W_{t18} = 10 \text{ ESAL DAILY}$ $W_{t18} = 0$

USE $W_{t18} = 10$ DAILY

Sub in eq. 1 \implies T = 31 Trucks/day/direction

Ex 3: In flexible pavement design of a road section by AASHTO method, the structural numbers needed for pavement layers were found to be:

 $SN_1 = 1.5$, $SN_2 = 3.5$, $SN_3 = 4.2$

Check the adequacy of the following design & if it is not adequate redesign it.

LayerLayer Coefficient (a)		Thickness (in)
Surface	0.42	4
Base	0.14	12
Subbase	0.11	6

SOLUTION:

$$\begin{split} SN_1 &= a_1 D_1 \implies D_1 = 1.5/0.42 = 3.57" = 4" \quad O.K \\ SN_2 &= a_1 D_1 + a_2 D_2 \implies D_2 = (3.5 - 4 \times 0.42)/0.14 = 13" \text{ NOT O.K} \\ & \text{USE } D_2 = 13" \\ SN_3 &= a_1 D_1 + a_2 D_2 + a_3 D_3 \implies D_3 = (4.2 - (4 \times 0.42 + 13 \times 0.14))/0.11 = \\ & 6.4" = 6.5" \text{ NOT O.K USE } D_3 = 6.5" \end{split}$$

Ex 4: A main highway with the following information: DHV = 100 vph, %Trucks = 40%, D.D = 60%, and the type of trucks as follows:

Design the flexible pavement (by AASHTO) method using the following information: (R = 4)

SOLUTION:

DHV = 0.15 ADT \implies ADT = 100/0.15 = 667 vpd

 $FADT = CADT \times (1+r)^{x+n}$; $\rho_t = 2.5$ (main hyw)

Assume:

n: design life (20-25) years = 20 years

r: annual rate of traffic growth (6-9%) = 6%

x: years of constructions (≥ 2 years)

FADT = $667 \times (1+0.06)^{22} = 2404$ vpd

T = FADT \times % Trucks \times D.D = 2404 \times 0.4 \times 0.6 = 577 Truck/day/direction

$$\begin{split} W_{t18} &= T \times \sum A \times F = 577 \times (0.3 \times 0.4 + 0.3 \times 0.365 + 0.7 \times 1.49 + 0.7 \times 1.11) \\ &= 1183 \text{ ESAL DAILY} \\ M.S &= 500 \times 2.205 = 1102.5 \text{ Ib} \\ a_1 &= 0.31 \quad , a_3 = 0.12 \quad \text{from chart pages (08-5) & (08-6)} \\ S_1 &= 7.2 \quad , \quad S_3 = 5.2 \quad \text{from chart page (08-7)} \\ SN_1 &= 4 \qquad \text{from chart page (08-9)} \\ SN_1 &= a_1 D_1 \implies D_1 = 4/0.31 = 12.9" = 13" \\ SN_3 &= 5.1 \qquad \text{from chart page (08-9)} \\ SN_3 &= a_1 D_1 + a_2 D_2 + a_3 D_3 = D_3 = (5.1 - 0.31 \times 13)/0.12 = 8.9" = 9" \end{split}$$

Ex 5: A flexible pavement of main hyw consists of three layers as shown below. Find the number of trucks which can travel on it without failure. The effective axle per 1000 trucks = 150 single axle (18kips) & the regional factor R = 1.5

Layers	Layer thickness (D)	Layer Coefficient (a)	(S) Value
Asphalt Concrete	4"	0.42	7
Crushed Stone	6"	0.14	5
Sand-Gravel	6"	0.1	3

$$\label{eq:pt} \begin{split} \rho_t &= 2.5 \;(\text{main hyw}) \\ &SN_1 = a_1 D_1 = 0.42 \times 4 = 1.68 \quad, \qquad S_1 = 7 \\ &SN_2 = a_1 D_1 + a_2 D_2 = 1.68 + 6 \times 0.14 = 2.52 \quad, \qquad S_2 = 5 \\ &SN_3 = a_1 D_1 + a_2 D_2 + a_3 D_3 = 2.52 + 0.1 \times 6 = 3.12 \quad, \qquad S_3 = 3 \\ &(W_{t18})_1 = 18 \; \text{ESAL Daily} \end{split}$$

 $(W_{t18})_2 = 30$ ESAL Daily

 $(W_{t18})_3 = 23$ ESAL Daily

نختار دائما الاقل:

 $W_{t18} = 18 ESAL Daily$

 $18 = T \times \sum A \times F = T \times \{(150/1000) \times 1\} \implies T = 120 \text{ Trucks/day/direction}$