

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

(Python)

Functions

Functions are useful for breaking up a large program to make it easier to

read and maintain. They are also useful if you find yourself writing the

same code at several different pits in your program. You can put that

code in a function and call the function whenever you want to execute

that code.

Basics: functions are defined with the def statement. The statement

ends with a colon, and the code that is part of the function is indented

below def statement. Here we create a simple function that just prints

something.

The first two lines define the function. In the last three lines we call the

function twice.

One use for function is if you are using the same code over and over again

in various parts of your program, you can make program shorter and

easier to understand by putting the code in a function. For instance,

suppose for some reason you need to print a box as several points in your

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

(Python)

program. Put the code into a function, and then whenever you need a

box, just call the function rather than typing several lines of redundant

code. Here is the function.

One benefit of this is that if you decide to change the size of the box, you

just have to modify the code in the function, whereas if you had copied

and pasted the box-drawing code everywhere you needed it, you would

have to change all of them.

Arguments: we can pass values to functions. Here is an example:

When we call the print_hello function with the value 3, that value gets

stored in the variable n. we can then refer to that variable n in our

function’s code. You can pass more than one value to a function:

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

(Python)

Returning values: we can write function that perform calculations and

return a result. Here is a simple function that converts temperatures

from Celsius to Fahrenheit.

The return statement is used to sent the result of a function’s

calculations back to the caller. Notice that the function itself does not do

any printing. The printing is done outside the function. That way, we can

do math with the result, like below.

If we had just printed the result in the function instead of returning it,

the result would have been printed to the screen and forgotten about,

and we would never be able to do anything with it.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

(Python)

A function can return multiple values as a list. Say we want to write a

function that solve the system of equations x = (de-bf)/(ad-bc) and y =

(af-ce)/(ad-bc). We need our function to return both the x and y solution.

This method uses the shortcut for assigning to lists.

A return statement by itself can be used to end a function early.

The same effect can be achieved with an if/else statement, but in some
cases, using return can make your code simpler and more readable.

Default arguments and keyword arguments: you can specify a default
value for an argument. This makes it optional, and if the caller decides
not to use it, then it takes the default value. Here is an example:

default arguments need to come at the end of the function definition,
after all of the non-default arguments.

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

(Python)

Keyword arguments: a related concept to default arguments is keyword
arguments. Say we have the following function definition:

Every time you call this function, you have to remember the correct
order of the arguments. Fortunately, python allows you to name the
arguments when calling the function, as shown below:

As we can see, the order of the arguments does not matter when you
use keyword arguments. When defining the function, it would be a good
idea to give defaults. For instance, most of the time, caller would want
left justification, a white background, etc. using these values as defaults
means the caller does not have to specify every single argument every
time, they call the function. Here is an example.

Local variables: let’s say we have two functions like the ones below that
each use a variable i:

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

(Python)

A problem that could arise here is that when we call func1, we might
mess up the value of I in funct2. In a large program it would be a
nightmare trying to make sure that we don’t repeat variable names in
different functions, and, fortunately, we don’t have to worry about this.
When a variable is defined inside a function, it is local to that function,
which means it essentially does not exist outside that function. This way
each function can define its own variables and not have to worry about
if those variable names are used in other functions.

Global variables: on the other hand, sometimes you actually do want the
same variable to be available to multiple functions. Such a variable is
called a global variable. You have to be careful using global variables,
especially in larger programs, but a few global variables used judiciously
are fine in smaller program. Here is a short example:

In this program we have a variable time_left that we would like multiple
function to have access to. If a function wants to change the value of that
variable, we need to tell the function that time_left is a global variable.
We use a global statement in the function to do this. On the other hand,
if we just want to use the value of the global variable, we do not need a
global statement.

Arguments - revisited: we finish this lecture with a bit of technical detail.
Here are two simple functions:

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

(Python)

When we call func1 with a and func2 with L, a question arises: do the

functions change the value of a and L?

The value of a is unchanged, but the value of L is changed. The reason

has to with difference in the way that python handles numbers and lists.

• Lists are said to be mutable objects, meaning they can be changed.

• Numbers and string are immutable, meaning they cannot be

changed.

Exercises

1. Write a function called rectangle that takes two integers m and n

as arguments and prints out mXn box consisting of asterisk. Shown

below is the output of rectangle (2,4).

2. Write a function called add_excitement that takes a list of string

and adds an exclamation point (!) to the end of each string in the

E-mail: hasanein.y.m.alhrabi@uomus.edu.iq

College of Engineering & Technology

Computer Techniques Engineering Department

Artificial Intelligence – Stage 3

(Python)

list. The program should modify the original list and not return

anything.

3. Modify the same function except that it should not modify the

original list and should instead return a new list.

4. Write a function called sum_digits that is given an integer num and

returns the sum of the digits of num.

5. Write a function called first_diff that is given two strings and

returns the first location in which the string differ. It the string are

identical, it should return -1.

