INTRODUCTION TO MATRICES

When we wish to solve large systems of simultaneous linear equations, which arise for example in the problem of finding the forces on members of a large framed structure, we can isolate the coefficients of the variables as a block of numbers called a matrix. There are many other applications matrices. In this Section we develop the terminology and basic properties of a matrix.
يمكنتا عزل معاملات المتغيرات ككتلة من الأرقام تسمى المصفوفة. هناكّ العديد من مصفوفات التطبيقات الأخرى. في هذا القسم نقوم بتطوير الهصطلحات والخصائص الأساسية للمصفوفة.

Representing simultaneous linear equations

Suppose that we wish to solve the following three equations in three unknowns x_{1}, x_{2} and x_{3} :

$$
\begin{array}{r}
3 x_{1}+2 x_{2}-x_{3}=3 \\
x_{1}-x_{2}+x_{3}=4 \\
2 x_{1}+3 x_{2}+4 x_{3}=5
\end{array}
$$

We can isolate three facets of this system: the coefficients of x_{1}, x_{2}, x_{3}; the unknowns x_{1}, x_{2}, x_{3}; and the numbers on the right-hand sides.
Notice that in the system

$$
\begin{array}{r}
3 x+2 y-z=3 \\
x-y+z=4 \\
2 x+3 y+4 z=5
\end{array}
$$

the only difference from the first system is the names given to the unknowns. It can be checked that the first system has the solution $x_{1}=2, x_{2}=-1, x_{3}=1$. The second system therefore has the solution $x=2, y=-1, z=1$.
We can isolate the three facets of the first system by using arrays of numbers and of unknowns:

$$
\left[\begin{array}{rrr}
3 & 2 & -1 \\
1 & -1 & 1 \\
2 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

Even more conveniently we represent the arrays with letters (usually capital letters)

$$
A X=B
$$

Here, to be explicit, we write

$$
A=\left[\begin{array}{rrr}
3 & 2 & -1 \\
1 & -1 & 1 \\
2 & 3 & 4
\end{array}\right] \quad X=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad B=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

Here A is called the matrix of coefficients, X is called the matrix of unknowns and B is called the matrix of constants.
If we now append to A the column of right-hand sides we obtain the augmented matrix for the system:

Definitions:

An array of numbers, rectangular in shape, is called a matrix. The first matrix below has 3 rows and 2 columns and is said to be a ' 3 by 2^{\prime} matrix (written 3×2). The second matrix is a ' 2 by 4 ' matrix (written 2×4).

$$
\left[\begin{array}{rr}
1 & 4 \\
-2 & 3 \\
2 & 1
\end{array}\right] \quad\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 9
\end{array}\right]
$$

The general 3×3 matrix can be written

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

where $a_{i j}$ denotes the element in row i, column j.
For example in the matrix:

$$
\begin{aligned}
& A=\left[\begin{array}{rrr}
0 & -1 & -3 \\
0 & 6 & -12 \\
5 & 7 & 123
\end{array}\right] \\
& a_{11}=0, \quad a_{12}=-1, \quad a_{13}=-3, \quad \ldots \quad a_{22}=6, \quad \ldots \quad a_{32}=7, \quad a_{33}=123
\end{aligned}
$$

COLUMN MATRIX

A matrix with only one column is called a column vector (or column matrix).
For example, $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$ are both 3×1 column vectors.

RAW MATRIX:

A matrix with only one row is called a row vector (or row matrix). For example $[2,-3,8,9]$ is a 1×4 row vector. Often the entries in a row vector are separated by commas for clarity.

Square matrix:

When the number of rows is the same as the number of columns, i.e. $m=n$, the matrix is said to be square and of order n (or m).

- In an $n \times n$ square matrix A, the leading diagonal (or principal diagonal) is the 'north-west to south-east' collection of elements $a_{11}, a_{22}, \ldots, a_{n n}$. The sum of the elements in the leading diagonal of A is called the trace of the matrix, denoted by $\operatorname{tr}(A)$.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \quad \operatorname{tr}(A)=a_{11}+a_{22}+\cdots+a_{n n}
$$

- A square matrix in which all the elements below the leading diagonal are zero is called an upper triangular matrix, often denoted by U.

$$
U=\left[\begin{array}{ccccc}
u_{11} & u_{12} & \ldots & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & \ldots & u_{2 n} \\
0 & 0 & \ldots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & u_{n n}
\end{array}\right] \quad u_{i j}=0 \quad \text { when } i>j
$$

- A square matrix in which all the elements above the leading diagonal are zero is called a lower triangular matrix, often denoted by L.

$$
L=\left[\begin{array}{ccccc}
l_{11} & 0 & 0 & \ldots & 0 \\
l_{21} & l_{22} & 0 & \ldots & 0 \\
\vdots & \vdots & \ldots & \ldots & 0 \\
l_{n 1} & l_{n 2} & \vdots & \ldots & l_{n n}
\end{array}\right] \quad l_{i j}=0 \quad \text { when } i<j
$$

- A square matrix where all the non-zero elements are along the leading diagonal is called a diagonal matrix, often denoted by D.

$$
D=\left[\begin{array}{ccccc}
d_{11} & 0 & 0 & \ldots & 0 \\
0 & d_{22} & 0 & \ldots & 0 \\
0 & 0 & \ldots & \ldots & 0 \\
0 & 0 & 0 & \ldots & d_{n n}
\end{array}\right] \quad d_{i j}=0 \quad \text { when } i \neq j
$$

Some examples of matrices and their classification:

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \text { is } 2 \times 3 . \text { It is not square. } \\
& B=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \text { is } 2 \times 2 . \text { It is square. }
\end{aligned}
$$

Also, $\operatorname{tr}(A)$ does not exist, and $\operatorname{tr}(B)=1+4=5$.

$$
C=\left[\begin{array}{rrr}
1 & 2 & 3 \\
0 & -2 & -5 \\
0 & 0 & 1
\end{array}\right] \text { and } D=\left[\begin{array}{rrr}
4 & 0 & 3 \\
0 & -2 & 5 \\
0 & 0 & 1
\end{array}\right] \text { are both } 3 \times 3 \text {, square and upper triangular. }
$$

Also, $\operatorname{tr}(C)=0$ and $\operatorname{tr}(D)=3$.

$$
E=\left[\begin{array}{rrr}
1 & 0 & 0 \\
2 & -2 & 0 \\
3 & -5 & 1
\end{array}\right] \text { and } F=\left[\begin{array}{rrr}
-1 & 0 & 0 \\
1 & 4 & 0 \\
0 & 1 & 1
\end{array}\right] \text { are both } 3 \times 3 \text {, square and lower triangular. }
$$

Also, $\operatorname{tr}(E)=0$ and $\operatorname{tr}(F)=4$.

$$
G=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -3
\end{array}\right] \text { and } H=\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \text { are both } 3 \times 3 \text {, square and diagonal. }
$$

Also, $\operatorname{tr}(G)=0$ and $\operatorname{tr}(H)=6$.

EXAMPLE NO.1:

Classify the following matrices (and, where possible, find the trace):

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \quad B=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
-1 & -3 & -2 & -4
\end{array}\right] \quad C=\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{array}\right]
$$

SOLUTION:

A is $3 \times 2, \quad B$ is $3 \times 4, \quad C$ is 4×4 and square.
The trace is not defined for A or B. However, $\operatorname{tr}(C)=34$.
diagonal يحسب للمصفوفه المربعه فقط وهو جمع ارقام الTrace

EXAMPLE NO.2:

Classify the following matrices：

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \quad B=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] \quad C=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \quad D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Answer
A is 3×3 and square，B is 3×3 lower triangular，C is 3×3 upper triangular and D is 3×3 diagonal．

EQUALITY OF MATRICES：

As we noted earlier，the terms in a matrix are called the elements of the matrix．
The elements of the matrix $A=\left[\begin{array}{rr}1 & 2 \\ -1 & -4\end{array}\right]$ are $1,2,-1,-4$
We say two matrices A, B are equal to each other only if A and B have the same number of rows and the same number of columns and if each element of A is equal to the corresponding element of B ．When this is the case we write $A=B$ ．For example if the following two matrices are equal：

$$
A=\left[\begin{array}{rr}
1 & \alpha \\
-1 & -\beta
\end{array}\right] \quad B=\left[\begin{array}{rr}
1 & 2 \\
-1 & -4
\end{array}\right]
$$

then we can conclude that $\alpha=2$ and $\beta=4$ ．

UNIT MATRIX：

The unit matrix or the identity matrix，denoted by I_{n}（or，often，simply I ），is the diagonal matrix of order n in which all diagonal elements are 1 ．
Hence，for example，$I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ ．

ZERO MATRIX：

The zero matrix or null matrix is the matrix all of whose elements are zero．There is a zero matrix for every size．For example the 2×3 and 2×2 cases are：

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Zero matrices，of whatever size，are denoted by $\underline{0}$ ．

The transpose of a matrix A is a matrix where the rows of A become the columns of the new matrix and the columns of A become its rows. For example

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] \text { becomes }\left[\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right]
$$

The resulting matrix is called the transposed matrix of A and denoted A^{T}. In the previous example it is clear that A^{T} is not equal to A since the matrices are of different sizes. If A is square $n \times n$ then A^{T} will also be $n \times n$.

EXAMPLE NO.3:

Find the transpose of the matrix $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$

Solution

Interchanging rows with columns we find

$$
B^{T}=\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

Both matrices are 3×3 but B and B^{T} are clearly different.
When the transpose of a matrix is equal to the original matrix i.e. AT = A, then we say that the matrix A is symmetric. (This is because it has symmetry about the leading diagonal.) In above Example B is not symmetric.

EXAMPLE NO. 4:

Show that the matrix $C=\left[\begin{array}{rrr}1 & -2 & 3 \\ -2 & 4 & -5 \\ 3 & -5 & 6\end{array}\right]$ is symmetric.

Solution

Taking the transpose of C :

$$
C^{T}=\left[\begin{array}{rrr}
1 & -2 & 3 \\
-2 & 4 & -5 \\
3 & -5 & 6
\end{array}\right]
$$

Clearly $C^{T}=C$ and so C is a symmetric matrix. Notice how the leading diagonal acts as a "mirror"; for example $c_{12}=-2$ and $c_{21}=-2$. In general $c_{i j}=c_{j i}$ for a symmetric matrix.

EXERCISE:

Find the transpose of each of the following matrices. Which are symmetric?

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right], \quad B=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
D=\left[\begin{array}{ll}
1 & 2 \\
4 & 5 \\
7 & 8
\end{array}\right] & E=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{array}
$$

Answer

$A^{T}=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right], \quad B^{T}=\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right] \quad C^{T}=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=C$, symmetric
$D^{T}=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8\end{array}\right] \quad E^{T}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=E$, symmetric

Addition and subtraction of matrices:

Under what circumstances can we add two matrices i.e. define $A+B$ for given matrices A, B ?
Consider

$$
A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rrr}
5 & 6 & 9 \\
7 & 8 & 10
\end{array}\right]
$$

There is no sensible way to define $A+B$ in this case since A and B are different sizes.
However, if we consider matrices of the same size then addition can be defined in a very natural way. Consider $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]$. The 'natural' way to add A and B is to add corresponding elements together:

$$
A+B=\left[\begin{array}{ll}
1+5 & 2+6 \\
3+7 & 4+8
\end{array}\right]=\left[\begin{array}{rr}
6 & 8 \\
10 & 12
\end{array}\right]
$$

In general if A and B are both $m \times n$ matrices, with elements $a_{i j}$ and $b_{i j}$ respectively, then their sum is a matrix C, also $m \times n$, such that the elements of C are

$$
c_{i j}=a_{i j}+b_{i j} \quad i=1,2, \ldots, m \quad j=1,2, \ldots, n
$$

In the above example

$$
c_{11}=a_{11}+b_{11}=1+5=6 \quad c_{21}=a_{21}+b_{21}=3+7=10 \quad \text { and so on. }
$$

Subtraction of matrices follows along similar lines:

$$
D=A-B=\left[\begin{array}{ll}
1-5 & 2-6 \\
3-7 & 4-8
\end{array}\right]=\left[\begin{array}{ll}
-4 & -4 \\
-4 & -4
\end{array}\right]
$$

Multiplication of a matrix by a number:

There is also a natural way of defining the product of a matrix with a number. Using the matrix A above, we note that

$$
A+A=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]+\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
6 & 8
\end{array}\right]
$$

What we see is that $2 A$ (which is the shorthand notation for $A+A$) is obtained by multiplying every element of A by 2 .
In general if A is an $m \times n$ matrix with typical element $a_{i j}$ then the product of a number k with A is written $k A$ and has the corresponding elements $k a_{i j}$.

Hence, again using the matrix A above,

$$
7 A=7\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{rr}
7 & 14 \\
21 & 28
\end{array}\right]
$$

Similarly:

$$
-3 A=\left[\begin{array}{rr}
-3 & -6 \\
-9 & -12
\end{array}\right]
$$

EXCERCISE:

For the following matrices find, where possible, $A+B, A-B, B-A, 2 A$.

1. $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \quad B=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
2. $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \quad B=\left[\begin{array}{rrr}1 & 1 & 1 \\ -1 & -1 & -1 \\ 1 & 1 & 1\end{array}\right]$
3. $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \quad B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$

Answer

1. $A+B=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right] \quad A-B=\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right] \quad B-A=\left[\begin{array}{rl}0 & -1 \\ -2 & -3\end{array}\right] \quad 2 A=\left[\begin{array}{ll}2 & 4 \\ 6 & 8\end{array}\right]$
2. $A+B=\left[\begin{array}{rrr}2 & 3 & 4 \\ 3 & 4 & 5 \\ 8 & 9 & 10\end{array}\right] \quad A-B=\left[\begin{array}{lll}0 & 1 & 2 \\ 5 & 6 & 7 \\ 6 & 7 & 8\end{array}\right] \quad B-A=\left[\begin{array}{rrr}0 & -1 & -2 \\ -5 & -6 & -7 \\ -6 & -7 & -8\end{array}\right]$
$2 A=\left[\begin{array}{rrr}2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18\end{array}\right]$
3. None of $A+B, A-B, B-A$, are defined. $\quad 2 A=\left[\begin{array}{rrr}2 & 4 & 6 \\ 8 & 10 & 12 \\ 14 & 16 & 18\end{array}\right]$

Some simple matrix properties:

Matrix addition is commutative: $A+B=B+A$
Matrix addition is associative: $A+(B+C)=(A+B)+C$
The distributive law holds: $k(A+B)=k A+k B$
$(A+B)^{\top}=A^{\top}+B^{\top}$
$(A-B)^{\top}=A^{\top}-B^{\top}$
$\left(A^{\top}\right)^{\top}=A$

EXAMPLE NO.5:

Show that $\left(A^{T}\right)^{T}=A$ for the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$

Solution

$A^{T}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]$ so that $\left(A^{T}\right)^{T}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=A$

EXAMPLE NO.6:

For the matrices $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \quad B=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$ verify that
(i) $3(A+B)=3 A+3 B$
(ii) $(A-B)^{T}=A^{T}-B^{T}$.

Answer

$$
\begin{aligned}
& \text { (i) } A+B=\left[\begin{array}{ll}
2 & 1 \\
2 & 5
\end{array}\right] ; \quad 3(A+B)=\left[\begin{array}{rr}
6 & 3 \\
6 & 15
\end{array}\right] ; \quad 3 A=\left[\begin{array}{rr}
3 & 6 \\
9 & 12
\end{array}\right] \\
& 3 B=\left[\begin{array}{rr}
3 & -3 \\
-3 & 3
\end{array}\right] ; \quad 3 A+3 B=\left[\begin{array}{rr}
6 & 3 \\
6 & 15
\end{array}\right]
\end{aligned}
$$

(ii) $A-B=\left[\begin{array}{cc}0 & 3 \\ 4 & 3\end{array}\right] ; \quad(A-B)^{T}=\left[\begin{array}{cc}0 & 4 \\ 3 & 3\end{array}\right] ; \quad A^{T}=\left[\begin{array}{cc}1 & 3 \\ 2 & 4\end{array}\right]$; $B^{T}=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right] ; \quad A^{T}-B^{T}=\left[\begin{array}{ll}0 & 4 \\ 3 & 3\end{array}\right]$.

Exercises

1. Find the coefficient matrix A of the system:

$$
\begin{array}{r}
2 x_{1}+3 x_{2}-x_{3}=1 \\
4 x_{1}+4 x_{2}=0 \\
2 x_{1}-x_{2}-x_{3}=0
\end{array}
$$

If $B=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 1\end{array}\right]$ determine $\left(3 A^{T}-B\right)^{T}$.
2. If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 4 \\ 0 & 1 \\ 2 & 7\end{array}\right]$ verify that $3\left(A^{T}-B\right)=\left(3 A-3 B^{T}\right)^{T}$.

Answers

1. $A=\left[\begin{array}{rrr}2 & 3 & -1 \\ 4 & 4 & 0 \\ 2 & -1 & -1\end{array}\right], \quad A^{T}=\left[\begin{array}{rrr}2 & 4 & 2 \\ 3 & 4 & -1 \\ -1 & 0 & -1\end{array}\right], \quad 3 A^{T}=\left[\begin{array}{rrr}6 & 12 & 6 \\ 9 & 12 & -3 \\ -3 & 0 & -3\end{array}\right]$

$$
3 A^{T}-B=\left[\begin{array}{rrr}
5 & 10 & 3 \\
5 & 7 & -9 \\
-3 & 0 & -4
\end{array}\right] \quad\left(3 A^{T}-B\right)^{T}=\left[\begin{array}{crr}
5 & 5 & -3 \\
10 & 7 & 0 \\
3 & -9 & -4
\end{array}\right]
$$

2. $A^{T}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right], \quad A^{T}-B=\left[\begin{array}{rr}2 & 0 \\ 2 & 4 \\ 1 & -1\end{array}\right], \quad 3\left(A^{T}-B\right)=\left[\begin{array}{rr}6 & 0 \\ 6 & 12 \\ 3 & -3\end{array}\right]$

$$
B^{T}=\left[\begin{array}{ccc}
-1 & 0 & 2 \\
4 & 1 & 7
\end{array}\right], \quad 3 A-3 B^{T}=\left[\begin{array}{rrr}
3 & 6 & 9 \\
12 & 15 & 18
\end{array}\right]-\left[\begin{array}{rrr}
-3 & 0 & 6 \\
12 & 3 & 21
\end{array}\right]=\left[\begin{array}{rrr}
6 & 6 & 3 \\
0 & 12 & -3
\end{array}\right]
$$

