1. Modelling with first-order equations

Applying Newton’s law of cooling

In Section 19.1 we introduced Newton's law of cooling. The model equation is

%__k(e—eg 00, at t—0. (5)

where 6 = 0(t) is the temperature of the cooling object at time ¢, 65 the temperature of the
environment (assumed constant) and k is a thermal constant related to the object, 6 is the initial
temperature of the liquid.

Solve this initial value problem:
dg
dt

—k(0—0,), 0=0, at t=0

Separate the variables to obtain an equation connecting two integrals:

Your solution

Answer

do
=— [ kdt
0 — 0 /

Now integrate both sides of this equation:

Your solution

Answer
In(6 — 0s) = —kt + C where C' is constant

Apply the initial condition and take exponentials to obtain a formula for 6:

Your solution

Answer
In(fy—0s) = C. Hence 1In(0—0s) = —kt+1In(6y—0) so that In(0—65) —In(0y—0y) = —kt

Thus, rearranging and inverting, we find:

In <;_G;> = —kt ;_% =e " giving 0 =0+ (0 — bs)e .
0~ Us 0~ Us
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The graph of # against ¢ for § = 0, + (6 — 0,)e ¥ is shown in Figure 4 below.
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Figure 4

We see that as time increases (t — o0), then the temperature of the object cools down to that of
the environment, that is: § — 0.

We could have solved (5) by the integrating factor method, which you are now asked to do.

We can write the equation for Newton's law of cooling (5) as

2—?+k0:k95, =0, at t=0 (6)

State the integrating factor for this equation:

Your solution

Answer

e/ kdt — ekt is the integrating factor.

Multiplying (6) by this factor we find that

do d
ekt% + keMo = ko e or, rearranging, %(ekw) = ke

Now integrate this equation and apply the initial condition:

Your solution

Answer
Integration produces e*'0 = 6,e* + C, where C' is an arbitrary constant. Then, applying the initial
condition: when t =0, 6y = 65 + C' so that C' = 6y — 0, gives the same result as before:

0 = (95 + (90 — Hs)e_kt,
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Modelling electrical circuits

Another application of first-order differential equations arises in the modelling of electrical circuits.
In Section 19.1 the differential equation for the RL circuit in Figure 5 below was shown to be

di
L—+Ri=F
dt+ /)

in which the initial condition is7 =0 at ¢t = 0.
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Figure 5
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First we write this equation in standard form {d—y + P(z)y = Q(x)} and obtain the integrating
x

factor.

Dividing the differential equation through by L gives
di R FE

@ T'TT
which is now in standard form. The integrating factor is e/ Fdt — oRY/L,

Multiplying the equation in standard form by the integrating factor gives

eRt/Lﬂ L eR/L R EeRt/L

dt L L
or, rearranging,

i(eRt/L ) E Rt/L.

dt V=7

Now we integrate both sides and apply the initial condition to obtain the solution.

Integrating the differential equation gives:
oRt/L ; E RS

where C' is a constant so
E
A C —Rt/L
? Ia + Ce
Applying the initial condition ¢ = 0 when ¢ = 0 gives
E
0=—=+C
R
E

that C' = ——.
so tha 7

E
Finally, 7 = —(1 — e fH/LYy,
V1= 5l )
Note that as t — 00, 7 — = so as t increases the effect of the inductor diminishes to zero.
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