The Cross Products

- The cross product (vector product) $\mathbf{u} \times \mathbf{v}$ is a vector perpendicular to \mathbf{u} and \mathbf{v}.
(illustrated in figure below)
- The direction is determined by the right hand rule.

\checkmark If the first two fingers of the right hand point in the directions of \bar{u} and \bar{v} respectively, then the thumb points in the direction of $\bar{u} \times \bar{v}$.

Ex: $\bar{i} \times \bar{j}=\bar{k}$

- The length is determined by the lengths of \mathbf{u} and \mathbf{v} and the angle between them.
- If we change the order informing the cross product, then we change the direction.

Ex:

$$
\bar{v} \times \bar{u}=-(\bar{u} \times \bar{v})
$$

-Theorem-
If $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$,
then,

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{l}
u_{2} \\
u_{3} \\
v_{2} \\
v_{3}
\end{array}\right|-\mathbf{j}\left|\begin{array}{l}
u_{1} u_{3} \\
v_{1} \\
v_{3}
\end{array}\right|+\mathbf{k}\left|\begin{array}{l}
u_{1} u_{2} \\
v_{1} v_{2}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k}
\end{aligned}
$$

Properties of Cross Product

(a) $\mathbf{u} \times \mathbf{u}=\mathbf{0}$
(b) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(c) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
(d) $(k \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(k \mathbf{v})=k(\mathbf{u} \times \mathbf{v})$
(e) $\mathbf{u} / / \mathbf{v}$ if and only if $\mathbf{u} \times \mathbf{v}=0$
(f) $\mathbf{u} \times \mathbf{0}=\mathbf{0} \times \mathbf{u}=\mathbf{0}$

Example:

1) Given that $\mathbf{u}=\langle 3,0,4\rangle$ and $\mathbf{v}=\langle 1,5,-2\rangle$,
find
(a) $\mathbf{u} \times \mathbf{v}$
(b) $\mathbf{v} \times \mathbf{u}$
2) Find two unit vectors that are perpendicular to the vectors $\mathbf{u}=2 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{v}=\mathbf{i}+3 \mathbf{j}+\mathbf{k}$.

Answer:

1) (a) $-20 \mathbf{i}+10 \mathbf{j}+15 \mathbf{k}$ (b) $20 \mathbf{i}-10 \mathbf{j}-15 \mathbf{k}$
2) $\pm \frac{1}{\sqrt{162}}\langle 11,-5,4\rangle$ (The unit vector in the opposite direction is also a unit vector perpendicular to both \bar{u} and \bar{v})

Further geometry interpretation of the cross product comes from computing its magnitude.

$$
\begin{aligned}
|\bar{u} \times \bar{v}|^{2}= & \left(u_{2} v_{3}-u_{3} v_{2}\right)^{2}+\left(u_{3} v_{1}-u_{1} v_{3}\right)^{2}+\left(u_{1} v_{2}-u_{2} v_{1}\right)^{2} \\
|\bar{u} \times \bar{v}|^{2}= & \left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right) \\
& -\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right)^{2} \\
= & |\bar{u}|^{2}|\bar{v}|^{2}-(\bar{u} \cdot \bar{v})^{2} \\
= & |\bar{u}|^{2}|\bar{v}|^{2}-|\bar{u}|^{2}|\bar{v}|^{2} \cos ^{2} \theta \\
= & |\bar{u}|^{2}|\bar{v}|^{2}\left(1-\cos ^{2} \theta\right) \\
= & |\bar{u}|^{2}|\bar{v}|^{2} \sin ^{2} \theta
\end{aligned}
$$

with θ is the angle between \bar{u} and \bar{v}.

Therefore, $|\bar{u} \times \bar{v}|=|\bar{u}||\bar{v}| \sin \theta$.

From the figure above, we can see that the magnitude of the cross product is the area of the parallelogram of which arrows representing the two vectors are adjacent sides.

Area of a parallelogram $=|\mathbf{u}| \mathbf{v}|\sin \theta=|\mathbf{u} \times \mathbf{v}|$

$$
\text { Area of triangle }=\frac{1}{2}|\mathbf{u} \times \mathbf{v}|
$$

Example:
(a) Find an area of a parallelogram that is
formed from vectors $\mathbf{u}=\mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and

$$
\mathbf{v}=-6 \mathbf{j}+5 \mathbf{k} .
$$

(b) Find an area of a triangle that is formed
from vectors $\mathbf{u}=\mathbf{i}+\mathbf{j}-3 \mathbf{k}$ and

$$
\mathbf{v}=-6 \mathbf{j}+5 \mathbf{k}
$$

Answer:
(a) $\sqrt{230} \quad$ (b) $\frac{\sqrt{230}}{2}$

Scalar Triple Product
-Theorem-
If $\mathbf{a}=\left\langle x_{1}, y_{1}, z_{1}\right\rangle, \mathbf{b}=\left\langle x_{2}, y_{2}, z_{2}\right\rangle$ and
$\mathbf{c}=\left\langle x_{3}, y_{3}, z_{3}\right\rangle$,
then

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|
$$

Properties of The Scalar Triple Product

1) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
2) $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{b} \cdot \mathbf{c}) \mathbf{a}$
3) $\mathbf{a} \cdot(\mathbf{c} \times \mathbf{b})=-\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$
4) $\mathbf{a} \cdot(\mathbf{a} \times \mathbf{b})=0$
5) $(\mathbf{a}+\mathbf{d}) \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})+\mathbf{d} \cdot(\mathbf{b} \times \mathbf{c})$

Example:
If $\mathbf{a}=3 \mathbf{i}+4 \mathbf{j}-\mathbf{k}, \mathbf{b}=-6 \mathbf{j}+5 \mathbf{k}$ and $\mathbf{c}=\mathbf{i}+\mathbf{j}-\mathbf{k}$, evaluate
(a) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$
(b) $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
(c) $(\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b}$
(d) $\mathbf{b} \cdot(\mathbf{a} \times \mathbf{c})$
6.1 Lines in Space

In this section we use vectors to study lines in three-dimensional space.

HOW LINES CAN BE DEFINED USING VECTORS?
The most convenient way to describe a line in
space is to give a point on it and a nonzero vector parallel to it.

Suppose L is a straight line that passes
through $P\left(x_{0}, y_{0}, z_{0}\right)$ and is parallel to the vector $\mathbf{v}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$.

Thus, a point $Q(x, y, z)$ also lies on the line if

$$
\overrightarrow{P Q}=t \mathrm{v}
$$

Let,

$$
\mathrm{r}_{0}=\overrightarrow{O P} \quad \text { and } \quad \mathrm{r}=\overrightarrow{O Q}
$$

Then

$$
\begin{gathered}
\therefore \overrightarrow{P Q}=\mathrm{r}-\mathrm{r}_{0} \\
\mathbf{r}-\mathbf{r}_{0}=t \mathbf{v} \\
\mathbf{r}=\mathbf{r}_{0}+t \mathbf{v} \\
<x, y, z>=<x_{0}, y_{0}, z_{0}>+t<a, b, c> \\
\text {-Theorem- } \\
\text { (Parametric Equations for a Line) }
\end{gathered}
$$

The line through the point $P\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the nonzero vector $\mathbf{A}=\langle a, b, c\rangle$ has the parametric equations,

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t .
$$

If we let $\mathbf{R}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ denote the position vector of $P\left(x_{0}, y_{0}, z_{0}\right)$ and $\mathbf{R}=\langle x, y, z\rangle$ the position vector of the arbitrary point $Q(x, y, z)$ on the line, then we write equation (1) in the vector form,

$$
\mathbf{R}=\mathbf{R}_{0}+t \mathbf{A}
$$

Example:
Give the parametric equations for the line through the point $(6,4,3)$ and parallel to the vector $\langle 2,0,-7\rangle$.
-Theorem-
(Symmetric Equations for a line)

The line through the point $P\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the nonzero vector $\mathbf{A}=\langle a, b, c\rangle$ has the symmetrical equations,

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

Example:
Given that the symmetrical equations of a line
in space is $\frac{2 x+1}{3}=\frac{3-y}{4}=\frac{z+4}{2}$.
Find,
(a) a point on the line.
(b) a vector that is parallel to the line.

