
Note:

1. If  (−1)𝑛𝑎𝑛 is converge then  (−1)𝑛𝑎𝑛 is converge 

If  (−1)𝑛𝑎𝑛 is diverge then  (−1)𝑛𝑎𝑛 is also diverge 

The Absolutely & Conditional Convergence:  

1. If  (−1)𝑛𝑎𝑛 is convergence .this series is called Absolutely Convergent if   (−1)𝑛𝑎𝑛
is converge.

2. If  (−1)𝑛𝑎𝑛 is convergence and  (−1)𝑛𝑎𝑛 is divergence then 

 (−1)𝑛𝑎𝑛 is called Conditional Convergent
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Power Series :  

This has the form   𝑛=1
∞ 𝑎𝑛(𝑥 − ℎ)𝑛 = 𝑎1(𝑥 − ℎ) +𝑎2(𝑥 − ℎ)2+ 𝑎3(𝑥 − ℎ)3…… ..

To study these series we find the interval of x for absolute convergence by using the 

ratio test .

EX: Find the  interval of  absolute convergence of :
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