Geometric Series

Geometric series are series of the form
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If r = 1, the nth partial sum of the geometric series 1s

sp=a+a(l) +a(1)? +---+ a(1)"! = na,

and the series diverges because lim,— s, = £00, depending on the sign of a. If r = —1,
the series diverges because the nth partial sums alternate between a and 0. If || # 1, we
can determine the convergence or divergence of the series in the following way:
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Multiply s, by .

Subtract rs, from s,. Most of
the terms on the right cancel.
Factor.

We can solve for s, if r # 1.

If|r| < 1, then r" — 0 as n — o0 (as in Section 11.1) and s, —a/(1 — r). If [r| > 1,

then |r"|— o0 and the series diverges.



If |#| < 1, the geometric series a + ar + ar* + --- + ar" ' + --- converges

tWoiai(l — r):

= a
E n—1 — , lr| < 1.

If|r| = 1, the series diverges.
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The series

o0
(—1)"S 5 5 5
2~ =5—3%+ti6 @t
1s a geometric series witha = Sand »r = —1/4. It converges to
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EX: Y7—o3™ divergence series because r=3>1

Express the repeating decimal 5.232323 ... as the ratio of two integers.



Solution ~ We look for a pattern in the sequence of partial sums that might lead to a for-
mula for s;. The key observation is the partial fraction decomposition
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Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to
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We now see that sy — 1 as k — ©0. The series converges, and its sum is 1:
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Tests of convergences : =in(n+ 1)

nth term test for divergence :

for series ).,—; a, if lim a, # 0 then the series is divergence
n—->oo

but lim a,, = 0 then this doesn’t mean that ), a,, is converge .
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(¢) E (—1)"*! diverges because lim,—(—1)""! does not exist

: n+ 1
diverges because —; > |
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The integral test

Let {a,} be a sequence of positive terms. Suppose that a, = f(n), where f is a
continuous, positive, decreasmg function of x for aII x = N (N a positive inte-

ger). Then the series S - v ay and the integral f v f(x) dx both converge or both
diverge.



Show that the p-series
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(p a real constant) converges if p > 1, and diverges if p =

Solution If p = 1, then f(x) = 1/x” is a positive decreasing function of x. Since
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1 1 bP ' — o0 as b—>
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the series converges by the Integral Test. We emphasize that the sum of the p-series is not
1/(p — 1).The series converges. but we don’t know the value it converges to.
Ifp < 1.thenl — p = 0 and
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The series diverges by the Integral Test.




If p = 1, we have the (divergent) harmonic series
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We have convergence for p > 1 but divergence for every other value of p.
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converges by the Integral Test. The function f(x) = 1/(x? + 1) is positive, continuous,
and decreasing forx = 1, and
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EX:
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f f(x)dx= llm ( f —dx) = llm (ln(lnx)]
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The ratio test :

Let > a, be a series with positive terms and suppose that
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Then

(a) the series converges if p << 1,

(b) the series diverges if p = 1 or p i1s infinite,
(¢) the test is inconclusive if p = 1.



(a) For the series 3,0 (2" + 5)/3".
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The series converges because p = 2/3 is less than 1. This does nof mean that 2/3 is
the sum of the series. In fact,
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The root test :

Let > a, be a series with a, = O forn = N. and suppose that

lim WZ., = p.
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Then

(a) the series converges if p < 1,
(b) the series diverges if p = 1 or p is infinite,
(¢) the test is inconclusive it p = 1.
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Alternating Series :

A series of form ),,_,(—1)"a,, is called Alternating Series i.c.

P o(~1)ay = ag—a; +a, — a3 — -

or Yn=o(—=1)"an = Xy=o(cosnm)an

The Alternating Series Test :

The series Y., —-o(—1)"a, is convergence if :

1. a, >0 (a, ispositive)
2. a, = anyq foralln = N for some integer N
3. lima, =0

n—>00
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