Geometric Series

Geometric series are series of the form

$$a + ar + ar^{2} + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$$

in which a and r are fixed real numbers and $a \neq 0$. The series can also $\sum_{n=0}^{\infty} ar^n$. The ratio r can be positive, as in

$$1 + \frac{1}{2} + \frac{1}{4} + \cdots + \left(\frac{1}{2}\right)^{n-1} + \cdots,$$

or negative, as in

$$1 - \frac{1}{3} + \frac{1}{9} - \cdots + \left(-\frac{1}{3}\right)^{n-1} + \cdots$$

If r = 1, the *n*th partial sum of the geometric series is

$$s_n = a + a(1) + a(1)^2 + \cdots + a(1)^{n-1} = na$$

and the series diverges because $\lim_{n\to\infty} s_n = \pm \infty$, depending on the sign of a. If r = -1, the series diverges because the *n*th partial sums alternate between a and 0. If $|r| \neq 1$, we can determine the convergence or divergence of the series in the following way:

$$s_n = a + ar + ar^2 + \dots + ar^{n-1}$$

$$rs_n = ar + ar^2 + \dots + ar^{n-1} + ar^n$$

$$s_n - rs_n = a - ar^n$$

$$s_n(1 - r) = a(1 - r^n)$$

$$s_n = \frac{a(1 - r^n)}{1 - r}, \qquad (r \neq 1).$$
Multiply s_n by r .

Subtract rs_n from s_n . Most of the terms on the right cancel.

Factor.

We can solve for s_n if $r \neq 1$.

If |r| < 1, then $r^n \to 0$ as $n \to \infty$ (as in Section 11.1) and $s_n \to a/(1-r)$. If |r| > 1, then $|r^n| \to \infty$ and the series diverges.

If |r| < 1, the geometric series $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots$ converges to a/(1-r):

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}, \qquad |r| < 1.$$

If $|r| \ge 1$, the series diverges.

Ex:
$$\sum_{n=0}^{\infty} (\frac{1}{2})^n$$
 is a G.S.

a=1 ,r=
$$\frac{1}{2}$$
 < 1 ∴ converge to $\frac{1}{1-r} = \frac{1}{1-\frac{1}{2}} = 2$

The series

$$\sum_{n=0}^{\infty} \frac{(-1)^n 5}{4^n} = 5 - \frac{5}{4} + \frac{5}{16} - \frac{5}{64} + \cdots$$

is a geometric series with a = 5 and r = -1/4. It converges to

$$\frac{a}{1-r}=\frac{5}{1+(1/4)}=4.$$

EX: $\sum_{n=0}^{\infty} 3^n$ divergence series because r=3>1

Express the repeating decimal 5.232323 . . . as the ratio of two integers.

Solution We look for a pattern in the sequence of partial sums that might lead to a formula for s_k . The key observation is the partial fraction decomposition

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

SO

$$\sum_{n=1}^{k} \frac{1}{n(n+1)} = \sum_{n=1}^{k} \left(\frac{1}{n} - \frac{1}{n+1} \right)$$

and

$$s_k = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{k} - \frac{1}{k+1}\right).$$

Removing parentheses and canceling adjacent terms of opposite sign collapses the sum to

$$s_k=1-\frac{1}{k+1}.$$

We now see that $s_k \to 1$ as $k \to \infty$. The series converges, and its sum is 1:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Tests of convergences:

nth term test for divergence:

for series $\sum_{n=1}^{\infty} a_n$ if $\lim_{n\to\infty} a_n \neq 0$ then the series is divergence

but $\lim_{n\to\infty} a_n = 0$ then this doesn't mean that $\sum a_n$ is converge.

EX:

- (a) $\sum_{n=1}^{\infty} n^2$ diverges because $n^2 \to \infty$
- (b) $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges because $\frac{n+1}{n} \to 1$
- (c) $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges because $\lim_{n\to\infty} (-1)^{n+1}$ does not exist
- (d) $\sum_{n=1}^{\infty} \frac{-n}{2n+5}$ diverges because $\lim_{n\to\infty} \frac{-n}{2n+5} = -\frac{1}{2} \neq 0$.

The integral test

Let $\{a_n\}$ be a sequence of positive terms. Suppose that $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N a positive integer). Then the series $\sum_{n=N}^{\infty} a_n$ and the integral $\int_{N}^{\infty} f(x) dx$ both converge or both diverge.

Show that the *p*-series

$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

(p a real constant) converges if p > 1, and diverges if $p \le 1$.

Solution If p > 1, then $f(x) = 1/x^p$ is a positive decreasing function of x. Since

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \int_{1}^{\infty} x^{-p} dx = \lim_{b \to \infty} \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{b}$$

$$= \frac{1}{1-p} \lim_{b \to \infty} \left(\frac{1}{b^{p-1}} - 1 \right)$$

$$= \frac{1}{1-p} (0-1) = \frac{1}{p-1}, \qquad b^{p-1} \to \infty \text{ as } b \to \infty \text{ because } p-1 > 0.$$

the series converges by the Integral Test. We emphasize that the sum of the p-series is not 1/(p-1). The series converges, but we don't know the value it converges to.

If p < 1, then 1 - p > 0 and

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \frac{1}{1-p} \lim_{b \to \infty} (b^{1-p} - 1) = \infty.$$

The series diverges by the Integral Test.

If p = 1, we have the (divergent) harmonic series

$$1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots$$

We have convergence for p > 1 but divergence for every other value of p.

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

converges by the Integral Test. The function $f(x) = 1/(x^2 + 1)$ is positive, continuous, and decreasing for $x \ge 1$, and

$$\int_{1}^{\infty} \frac{1}{x^{2} + 1} dx = \lim_{b \to \infty} \left[\arctan x \right]_{1}^{b}$$

$$= \lim_{b \to \infty} \left[\arctan b - \arctan 1 \right]$$

$$= \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

EX:

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n} , , f(x) = \frac{1}{x \ln x}$$

$$\int_{2}^{\infty} f(x)dx = \lim_{n \to \infty} \left(\int_{2}^{\infty} \frac{1}{x \ln x} dx \right) = \lim_{n \to \infty} \left(\ln(\ln x) \right) \Big|_{2}^{n} =$$

$$\lim_{n\to\infty}(lnlnn-lnln2)=\infty$$

$$\therefore \sum_{n=2}^{\infty} \frac{1}{n \ln n}$$
 is diverges

The ratio test:

Let $\sum a_n$ be a series with positive terms and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho.$$

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

(a) For the series $\sum_{n=0}^{\infty} (2^n + 5)/3^n$,

$$\frac{a_{n+1}}{a_n} = \frac{(2^{n+1}+5)/3^{n+1}}{(2^n+5)/3^n} = \frac{1}{3} \cdot \frac{2^{n+1}+5}{2^n+5} = \frac{1}{3} \cdot \left(\frac{2+5\cdot 2^{-n}}{1+5\cdot 2^{-n}}\right) \to \frac{1}{3} \cdot \frac{2}{1} = \frac{2}{3}.$$

The series converges because $\rho = 2/3$ is less than 1. This does *not* mean that 2/3 is the sum of the series. In fact,

(b) If
$$a_n = \frac{(2n)!}{n!n!}$$
, then $a_{n+1} = \frac{(2n+2)!}{(n+1)!(n+1)!}$ and
$$\frac{a_{n+1}}{a_n} = \frac{n!n!(2n+2)(2n+1)(2n)!}{(n+1)!(n+1)!(2n)!}$$
$$= \frac{(2n+2)(2n+1)}{(n+1)(n+1)} = \frac{4n+2}{n+1} \rightarrow 4.$$

The root test:

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n \ge N$, and suppose that $\lim_{n \to \infty} \sqrt[n]{a_n} = \rho$.

Then

- (a) the series converges if $\rho < 1$,
- (b) the series diverges if $\rho > 1$ or ρ is infinite,
- (c) the test is inconclusive if $\rho = 1$.

$$\sum_{n=1}^{\infty} (1 - \frac{3}{n})^{7n^2}$$

$$\lim_{n \to \infty} \sqrt[n]{(1 - \frac{3}{n})^{7n^2}} = \lim_{n \to \infty} (1 - \frac{3}{n})^{7n} = (e^{-3})^7 = e^{-21} < 1$$

Alternating Series:

A series of form $\sum_{n=0}^{\infty} (-1)^n a_n$ is called <u>Alternating Series</u> i.e.

$$\sum_{n=0}^{\infty} (-1)^n a_n = a_0 - a_1 + a_2 - a_3 - \cdots \dots$$

or
$$\sum_{n=0}^{\infty} (-1)^n a_n = \sum_{n=0}^{\infty} (\cos n\pi) a_n$$

The Alternating Series Test:

The series $\sum_{n=0}^{\infty} (-1)^n a_n$ is convergence if:

- 1. $a_n > 0$ $(a_n \text{ is positive })$
- 2. $a_n \ge a_{n+1}$ for all $n \ge N$, for some integer N
- $3. \lim_{n\to\infty} a_n = 0$

Ex:

$$1 - \sum_{n=0}^{\infty} (-1)^n \frac{1}{n}$$
 is converge since $\lim_{n \to \infty} \frac{1}{n} = 0$

2.
$$\sum_{n=0}^{\infty} \frac{(\cos n\pi)}{1+n^2} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{1+n^2}$$
 is converge since $\lim_{n \to \infty} \frac{1}{1+n^2} = 0$