Lines in Space

Angle between Two Lines
Intersection of Two lines
Shortest Distance from a Point to a Line Planes in Space

Intersection of Two Planes
Angle between Two Planes
Angle between a Line and a Plane
Shortest Distance from a Point to a Plane

Basic Concepts

What is scalar?

$\checkmark \quad$ a quantity that has only magnitude
What is vector?
$\checkmark \quad$ a quantity that has magnitude and
direction
A vector can be represented by a directed line segment where
$\checkmark \quad$ length of the line segment

- the magnitude of the vector
$\checkmark \quad$ direction of the line segment
- the direction of the vector

\checkmark A vector can be written as $\overrightarrow{P Q}$, or \boldsymbol{a}. The order of the letters is important. $\overrightarrow{P Q}$ means the vector is from P to Q or the position vector Q relative to $P, \overrightarrow{Q P}$ means vector is from Q to P or the position vector P relative to Q.
\checkmark If $P\left(x_{1}, y_{1}\right)$ is the initial point and $Q\left(x_{2}, y_{2}\right)$ is the terminal point of a directed line segment, $\overrightarrow{P Q}$ then component form of vector \mathbf{v} that represents $\overrightarrow{P Q}$ is

$$
\left\langle v_{1}, v_{2}\right\rangle=\left\langle x_{x}-x_{1}, y_{2}-y_{1}\right\rangle=\binom{x_{2}-x_{1}}{y_{2}-y_{1}}
$$

and the magnitude or the length of \mathbf{v} is

$$
|\mathbf{v}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
=\sqrt{c_{1}^{2}+c_{2}^{2}}
$$

$$
\begin{aligned}
& \overrightarrow{O P}=\left\langle x_{1}-0, y_{1}-0\right\rangle=\left\langle x_{1}, y_{1}\right\rangle \\
& \overrightarrow{O Q}=\left\langle x_{2}-0, y_{2}-0\right\rangle=\left\langle x_{2}, y_{2}\right\rangle
\end{aligned}
$$

-Note-
Any vector that has magnitude of 1 unit = unit vector.

Example:

Find the component form and length of the vector \mathbf{v} that has initial point $(3,-7)$ and terminal point $(-2,5)$.

Solution:

$$
\begin{aligned}
& \bar{v}=\langle-2-3,5+7\rangle=\langle-5,12\rangle \\
& |\bar{v}|=\sqrt{(-5)^{2}+(12)^{2}}=\sqrt{25+144}=13
\end{aligned}
$$

Example:
Given $\mathbf{v}=\langle-2,5\rangle$ and $\mathbf{w}=\langle 3,4\rangle$, find each of the following vectors:
a) $\frac{1}{2} \mathbf{v}$
b) $\mathbf{w}-\mathbf{v}$
c) $\mathbf{v}+2 \mathbf{w}$

Answer:
a) $\langle-1,5 / 2\rangle$
b) $\langle 5,-1\rangle$
c) $\langle 4,13\rangle$

Theorem:
If \boldsymbol{a} is a non-null vector and if $\hat{\boldsymbol{a}}$ is a unit vector having the same direction as \boldsymbol{a}, then

$$
\hat{a}=\frac{a}{|a|}
$$

-Note-
To verify that magnitude is $1,|\hat{a}|=1$
Example:
Find a unit vector in the direction of $\mathbf{v}=\langle-2,5\rangle$ and verify that it has length 1.

Solution:

$$
\begin{aligned}
& \bar{v}=\frac{\langle-2,5\rangle}{\sqrt{(-2)^{2}+5^{2}}}=\frac{1}{\sqrt{29}}\langle-2,5\rangle \\
& |\bar{v}|=\sqrt{(-2 / \sqrt{29})^{2}+(5 / \sqrt{29})^{2}}=\sqrt{1}=1
\end{aligned}
$$

\checkmark Three standard unit vectors are: \mathbf{i}, \mathbf{j} dan \mathbf{k}

\checkmark Vectors \mathbf{i}, \mathbf{j} and \mathbf{k} can be written in components form:

$$
\begin{aligned}
& i=\langle 1,0,0\rangle \\
& \boldsymbol{j}=\langle 0,1,0\rangle \text { and } \\
& \boldsymbol{k}=\langle 0,0,1\rangle
\end{aligned}
$$

and can interpreted as

$$
\begin{aligned}
\boldsymbol{a} & =\langle x, y, z\rangle \\
& =x \boldsymbol{i}+y \dot{j}+z \boldsymbol{k}
\end{aligned}
$$

\checkmark The vector $P \bar{Q}$ with initial point

$$
P\left(x_{1}, y_{1}, z_{1}\right) \text { and terminal point } Q\left(x_{2}, y_{2}, z_{2}\right)
$$

has the standard representation

$$
\begin{gathered}
P \bar{Q}=\left(x_{2}-x_{1}\right) \mathbf{i}+\left(y_{2}-y_{1}\right) \mathbf{j}+\left(z_{2}-z_{1}\right) \mathbf{k} \\
\text { or } \\
P Q=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>\right.
\end{gathered}
$$

Example:

Let \mathbf{u} be the vector with initial point $(2,-5)$
and terminal point ($-1,3$), and let $\mathbf{v}=2 \mathbf{i}-\mathbf{j}$.
Write each of the following vectors as a linear combination of \mathbf{i} and \mathbf{j}.
a) \mathbf{u}
b) $\mathbf{w}=2 \mathbf{u}-3 \mathbf{v}$

-Note-
If θ is the angle between \bar{v} and the positive x - axis then we can write

$$
x=|\bar{v}| \cos \theta \text { and } \mathrm{y}=|\bar{v}| \sin \theta ;|\bar{v}|=\sqrt{x_{1}^{2}+y_{2}{ }^{2}} .
$$

Example:
The vector \mathbf{v} has a length of 3 and makes an
angle of $30^{\circ}=\frac{\pi}{6}$ with the positive x-axis.
Write \mathbf{v} as a linear combination of the unit vectors \mathbf{i} and \mathbf{j}.

