

### **Lines in Space**

Angle between Two Lines Intersection of Two lines Shortest Distance from a Point to a Line **Planes in Space** Intersection of Two Planes Angle between Two Planes Angle between a Line and a Plane

### **Basic Concepts**

# What is scalar?

 $\checkmark$  a quantity that has only magnitude

### What is vector?

a quantity that has magnitude and direction

A *vector* can be represented by a *directed line segment* where

- $\checkmark$  length of the line segment
  - the magnitude of the vector
- $\checkmark$  direction of the line segment
  - the direction of the vector



- ✓ A vector can be written as  $\overrightarrow{PQ}$ , or *a*. The order of the letters is important.  $\overrightarrow{PQ}$ means the vector is from *P* to *Q* or the position vector *Q* relative to *P*,  $\overrightarrow{QP}$  means vector is from *Q* to *P* or the position vector *P* relative to *Q*.
- ✓ If  $P(x_1, y_1)$  is the initial point and  $Q(x_2, y_2)$  is the terminal point of a directed line segment,  $\overrightarrow{PQ}$  then **component form** of vector **v** that represents  $\overrightarrow{PQ}$  is

$$\langle v_1, v_2 \rangle = \langle x_x - x_1, y_2 - y_1 \rangle = \begin{pmatrix} x_2 - x_1 \\ y_2 - y_1 \end{pmatrix}$$

and the **magnitude** or the **length** of **v** is



#### -Note-

Any vector that has magnitude of 1 unit = unit vector.

### Example:

Find the component form and length of the vector **v** that has initial point (3,-7) and terminal point (-2,5).

Solution:

$$\overline{v} = \langle -2 - 3, 5 + 7 \rangle = \langle -5, 12 \rangle$$
  
 $|\overline{v}| = \sqrt{(-5)^2 + (12)^2} = \sqrt{25 + 144} = 13$ 

### Example:

Given  $\mathbf{v} = \langle -2,5 \rangle$  and  $\mathbf{w} = \langle 3,4 \rangle$ , find each of the following vectors:

a) 
$$\frac{1}{2}$$
**v** b) **w**-**v** c) **v**+2**w**

Answer:

a)  $\langle -1, 5/2 \rangle$  b)  $\langle 5, -1 \rangle$  c)  $\langle 4, 13 \rangle$ 

#### **Theorem:**

If *a* is a non-null vector and if  $\hat{a}$  is a **unit** vector having the same direction as *a*, then

$$\hat{a} = \frac{a}{|a|}$$

-Note-

To verify that magnitude is 1,  $|\hat{a}| = I$ 

## Example:

Find a unit vector in the direction of  $\mathbf{v} = \langle -2,5 \rangle$  and verify that it has length 1. *Solution:* 

$$\overline{v} = \frac{\langle -2, 5 \rangle}{\sqrt{(-2)^2 + 5^2}} = \frac{1}{\sqrt{29}} \langle -2, 5 \rangle$$
$$|\overline{v}| = \sqrt{(-2/\sqrt{29})^2 + (5/\sqrt{29})^2} = \sqrt{1} = 1$$

#### Standard Unit Vectors

 $\checkmark$  Three standard unit vectors are: **i**, **j** dan **k** 



✓ Vectors i, j and k can be written in components form:

$$a = \langle x, y, z \rangle$$
$$= xi + yj + zk$$

✓ The vector  $P\bar{Q}$  with initial point  $P(x_1, y_1, z_1)$  and terminal point  $Q(x_2, y_2, z_2)$ has the standard representation  $P\bar{Q} = (x_2 - x_1)\mathbf{i} + (y_2 - y_1)\mathbf{j} + (z_2 - z_1)\mathbf{k}$ or

 $PQ = < x_2 - x_1, \ y_2 - y_1, \ z_2 - z_1 >$ 

# Example:

Let **u** be the vector with initial point (2,-5) and terminal point (-1,3), and let  $\mathbf{v} = 2\mathbf{i} - \mathbf{j}$ . Write each of the following vectors as a linear combination of **i** and **j**.

a) **u** 

b) 
$$\mathbf{w} = 2\mathbf{u} - 3\mathbf{v}$$



### -Note-

If  $\theta$  is the angle between  $\overline{v}$  and the positive x – axis then we can write

$$x = |\overline{v}| \cos \theta$$
 and  $y = |\overline{v}| \sin \theta$ ;  $|\overline{v}| = \sqrt{x_1^2 + y_2^2}$ 

### Example:

The vector **v** has a length of 3 and makes an angle of  $30^{\circ} = \frac{\pi}{6}$  with the positive *x*-axis. Write **v** as a linear combination of the unit vectors **i** and **j**.