6.1.1 Angle between Two Lines

Consider two straight lines

$$
\begin{aligned}
& l_{1}: \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \\
& \quad \\
& l_{2}: \frac{x-x_{2}}{d}=\frac{y-y_{2}}{e}=\frac{z-z_{2}}{f}
\end{aligned}
$$

The line l_{1} parallel to the vector $\mathbf{u}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ and the line l_{2} parallel to the vector $\mathbf{v}=d \mathbf{i}+e \mathbf{j}+f \mathbf{k}$. Since the lines l_{1} and l_{2} are parallel to the vectors \mathbf{u} and \mathbf{v} respectively, then the angle, θ between the two lines is given by

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

Example:
Find an acute angle between line

$$
l_{1}=\mathbf{i}+2 \mathbf{j}+\mathrm{t}(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k})
$$

and line

$$
l_{2}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}+\mathrm{s}(3 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k}) .
$$

6.1.2 Intersection of Two lines

In three dimensional coordinates (space),
two line can be
in one of the
three cases as
shown below,

(a)

Let l_{1} and l_{2} are given by:
$l_{1}: \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ and
$l_{2}: \frac{x-x_{2}}{d}=\frac{y-y_{2}}{e}=\frac{z-z_{2}}{f}$
From (1), we have $\mathbf{v}_{1}=\langle a, b, c\rangle$
From (2), we have $\mathbf{v}_{2}=\langle d, e, f\rangle$
Two lines are parallel if we can write

$$
\mathbf{v}_{1}=\lambda \mathbf{v}_{2}
$$

The parametric equations of l_{1} and l_{2} are:

$$
\begin{aligned}
l_{1}: & x=x_{1}+a t \\
y & =y_{1}+b t \\
z & =z_{1}+c t
\end{aligned}
$$

$l_{2}: \quad x=x_{2}+d s$
$\left.\begin{array}{l}y=y_{2}+e s \\ z=z_{2}+f s\end{array}\right\}$
(3)

Two lines are intersect if there exist unique values of t and s such that:

$$
\begin{aligned}
& x_{1}+a t=x_{2}+d s \\
& y_{1}+b t=y_{2}+e s \\
& z_{1}+c t=z_{2}+f s
\end{aligned}
$$

Substitute the value of t and s in (3) to get x, y and z. The point of intersection $=(x, y, z)$

Two lines are skewed if they are neither parallel nor intersect.

Example:

Determine whether l_{1} and l_{2} are parallel, intersect or skewed.
a) $l_{1}: x=3+3 t, y=1-4 t, \quad z=-4-7 t$

$$
l_{2}: x=2+3 s, y=5-4 s, \quad z=3-7 s
$$

b) $l_{1}: \frac{x-1}{1}=\frac{2-y}{4}=z$

$$
l_{2}: \frac{x-4}{-1}=y-3=\frac{z+2}{3}
$$

Solutions:
a) for l_{1} :
point on the line, $\mathrm{P}=(3,1,-4)$
vector that parallel to line, $\mathbf{v}_{1}=<3,-4,-7>$
for l_{2} :
point on the line, $\mathrm{Q}=(2,5,3)$
vector that parallel to line, $\mathbf{v}_{2}=<3,-4,-7>$

$$
\begin{aligned}
& \mathbf{v}_{1}=\lambda \mathbf{v}_{2} \quad ? \\
& \mathbf{v}_{1}=\mathbf{v}_{2} \quad \text { where } \lambda=1
\end{aligned}
$$

Therefore, lines l_{1} and l_{2} are parallel.
b) Symmetrical equations of l_{1} and l_{2} can be rewrite as:

$$
\begin{aligned}
& l_{1}: \frac{x-1}{1}=\frac{y-2}{-4}=\frac{z-0}{1} \\
& l_{2}: \frac{x-4}{-1}=\frac{y-3}{1}=\frac{z-(-2)}{3}
\end{aligned}
$$

Therefore:
for $l_{1}: \quad \mathrm{P}=(1,2,0) \quad, \quad \mathbf{v}_{1}=<1,-4,1>$
for $l_{2}: \quad \mathrm{Q}=(4,3,-2) \quad, \quad \mathbf{v}_{2}=<-1,1,3>$

$$
\begin{array}{ll}
\mathbf{v}_{1}=\lambda \mathbf{v}_{2} & ? \\
\mathbf{v}_{1} \neq \lambda \mathbf{v}_{2} \rightarrow & \text { not parallel. }
\end{array}
$$

In parametric eq's:
$l_{1}: x=1+t, y=2-4 t, z=t$
$l_{2}: x=4-s, y=3+s, z=-2+3 s$

$$
\begin{align*}
1+t & =4-s \tag{1}\\
2-4 t & =3+s \tag{2}\\
t & =-2+3 s \tag{3}
\end{align*}
$$

Solve the simultaneous equations (1), (2), and
(3) to get t and s.

$$
s=\frac{5}{4} \quad \text { and } t=\frac{7}{4}
$$

The value of t and s must satisfy (1), (2) and
(3). Clearly they are not satisfying (2) i.e

$$
2-\frac{7}{4}=3+\frac{5}{4} \quad ? \Rightarrow \frac{1}{4} \neq \frac{17}{4}
$$

Therefore, lines l_{1} and l_{2} are not intersect.
This implies the lines are skewed!

Example:
Let L_{1} and L_{2} be the lines
$L_{1}: x=1+4 t, y=5-4 t, z=-1+5 t$
$L_{2}: x=2+8 t, y=4-3 t, z=5+t$
(a) Are the lines parallel?
(b) Do the lines intersect?

