6.1.1 Angle between Two Lines

Consider two straight lines

$$l_{1}: \frac{x - x_{1}}{a} = \frac{y - y_{1}}{b} = \frac{z - z_{1}}{c}$$

and
$$l_{2}: \frac{x - x_{2}}{d} = \frac{y - y_{2}}{e} = \frac{z - z_{2}}{f}$$

The line l_1 parallel to the vector $\mathbf{u} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and the line l_2 parallel to the vector $\mathbf{v} = d\mathbf{i} + e\mathbf{j} + f\mathbf{k}$. Since the lines l_1 and l_2 are parallel to the vectors \mathbf{u} and \mathbf{v} respectively, then the angle, θ between the two lines is given by

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|}$$

Example:

Find an acute angle between line

$$l_1 = \mathbf{i} + 2\mathbf{j} + \mathbf{t} (2\mathbf{i} - \mathbf{j} + 2\mathbf{k})$$

and line

$$l_2 = 2i - j + k + s (3i - 6j + 2k).$$

6.1.2 Intersection of Two lines

In three dimensional coordinates (space), two line can be in one of the ℓ_1 three cases as ℓ_2 shown below, \boldsymbol{y} (a) ℓ_1 ℓ_2 υ **(b)** xу

Let l_1 and l_2 are given by:

$$l_{1}: \frac{x - x_{1}}{a} = \frac{y - y_{1}}{b} = \frac{z - z_{1}}{c} \text{ and } (1)$$

$$l_{2}: \frac{x - x_{2}}{d} = \frac{y - y_{2}}{e} = \frac{z - z_{2}}{f}$$
(2)

From (1), we have $\mathbf{v}_1 = \langle a, b, c \rangle$ From (2), we have $\mathbf{v}_2 = \langle d, e, f \rangle$ Two lines are <u>parallel</u> if we can write $\mathbf{v}_1 = \lambda \mathbf{v}_2$

The parametric equations of l_1 and l_2 are:

$$l_{1}: \quad x = x_{1} + at$$

$$y = y_{1} + bt$$

$$z = z_{1} + ct$$

$$l_{2}: \quad x = x_{2} + ds$$

$$y = y_{2} + es$$

$$z = z_{2} + fs$$

$$(3)$$

Two lines are <u>intersect</u> if there exist unique values of *t* and *s* such that:

$$x_1 + at = x_2 + ds$$

$$y_1 + bt = y_2 + es$$

$$z_1 + ct = z_2 + fs$$

Substitute the value of *t* and *s* in (3) to get *x*, *y* and *z*. The point of intersection = (x, y, z)

Two lines are <u>skewed</u> if they are neither parallel nor intersect.

Example:

Determine whether l_1 and l_2 are parallel, intersect or skewed.

a)
$$l_1: x = 3 + 3t$$
, $y = 1 - 4t$, $z = -4 - 7t$
 $l_2: x = 2 + 3s$, $y = 5 - 4s$, $z = 3 - 7s$

b)
$$l_1: \frac{x-1}{1} = \frac{2-y}{4} = z$$

 $l_2: \frac{x-4}{-1} = y-3 = \frac{z+2}{3}$

Solutions:

a) <u>for</u> l_1 :

point on the line, P = (3, 1, -4) vector that parallel to line, $\mathbf{v}_1 = <3,-4,-7 >$ <u>for</u> l_2 :

point on the line, Q = (2, 5, 3)

vector that parallel to line, $\mathbf{v}_2 = <3, -4, -7 >$

$$\mathbf{v}_1 = \lambda \, \mathbf{v}_2$$
 ?
 $\mathbf{v}_1 = \mathbf{v}_2$ where $\lambda = 1$

Therefore, lines l_1 and l_2 are parallel.

b) Symmetrical equations of l_1 and l_2 can be rewrite as:

$$l_1: \frac{x-1}{1} = \frac{y-2}{-4} = \frac{z-0}{1}$$
$$l_2: \frac{x-4}{-1} = \frac{y-3}{1} = \frac{z-(-2)}{3}$$

Therefore:

$$\begin{array}{ll} & \underline{\text{for}} \ l_1: \ \mathbf{P} = (1, 2, 0) &, \ \mathbf{v}_1 = <1, -4, 1 > \\ & \underline{\text{for}} \ l_2: \ \mathbf{Q} = (4, 3, -2) &, \ \mathbf{v}_2 = <-1, 1, 3 > \\ & \mathbf{v}_1 = \lambda \ \mathbf{v}_2 & ? \\ & \mathbf{v}_1 \neq \lambda \ \mathbf{v}_2 & \rightarrow & \text{not parallel.} \end{array}$$

In parametric eq's:

$$l_1: x = 1 + t$$
, $y = 2 - 4t$, $z = t$
 $l_2: x = 4 - s$, $y = 3 + s$, $z = -2 + 3s$

$$1 + t = 4 - s$$
 (1)

$$2 - 4t = 3 + s$$
 (2)

 $t = -2 + 3s \tag{3}$

Solve the simultaneous equations (1), (2), and (3) to get *t* and *s*.

$$s = \frac{5}{4}$$
 and $t = \frac{7}{4}$

The value of *t* and *s* must satisfy (1), (2) and (3). Clearly they are not satisfying (2) i.e

$$2 - \frac{7}{4} = 3 + \frac{5}{4}$$
 ? \Rightarrow $\frac{1}{4} \neq \frac{17}{4}$

Therefore, lines l_1 and l_2 are not intersect.

This implies the lines are skewed!

Example:

Let L_1 and L_2 be the lines $L_1: x = 1 + 4t, y = 5 - 4t, z = -1 + 5t$ $L_2: x = 2 + 8t, y = 4 - 3t, z = 5 + t$ (a) Are the lines parallel?

(b) Do the lines intersect?