Vectors in Space

Properties of Vectors in Space
Let $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ be vectors in 3 dimensional space and k is a constant.

1. $\mathbf{v}=\mathbf{w}$ if and only if

$$
v_{1}=w_{1}, v_{2}=w_{2}, v_{3}=w_{3} .
$$

2. The magnitude of \mathbf{v} is $|\mathbf{v}|=\sqrt{v_{1}{ }^{2}+v_{2}{ }^{2}+v_{3}{ }^{2}}$
3. The unit vector in the direction of \mathbf{v} is

$$
\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\left\langle v_{1}, v_{2}, v_{3}\right\rangle}{|\mathbf{v}|}
$$

4. $\mathbf{v}+\mathbf{w}=\left\langle v_{1}+w_{1}, v_{2}+w_{2}, v_{3}+w_{3}\right\rangle$
5. $k \mathbf{v}=\left\langle k v_{1}, k v_{2}, k v_{3}\right\rangle$
6. Zero vector is denoted as $\mathbf{0}=\langle 0,0,0\rangle$.
7. $\mathbf{v}+\mathbf{w}=\mathbf{w}+\mathbf{v}$
8. Let $\boldsymbol{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$,
then $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$.
9. $\mathbf{u}+\mathbf{0}=\mathbf{u}$
10. $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
11. $(\mathbf{c}+\mathbf{d}) \mathbf{u}=\mathbf{c u}+\mathrm{d} \mathbf{u}$
12. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
13. $\mathrm{c}(\mathrm{du})=(\mathrm{cd}) \mathbf{u}$
14. $1(\mathbf{u})=\mathbf{u}$ and $0(\mathbf{u})=\mathbf{0}$
15. $|\mathbf{c u}|=\mathrm{c}|\mathbf{u}|$

Example:
Express the vector $\overrightarrow{P Q}$ if it starts at point $P=(6,5,8)$ and stops at point $Q=(7,3,9)$ in components form.

Solution:

$$
\begin{aligned}
& \overrightarrow{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle \\
& \overrightarrow{P Q}=\langle 7-6,3-5,9-8\rangle \\
& \overrightarrow{P Q}=\langle 1,-2,1\rangle
\end{aligned}
$$

Example:
Given that $\mathbf{a}=\langle 3,1,-2\rangle, \mathbf{b}=\langle-1,6,4\rangle$. Find
(a) $\mathbf{a}+3 \mathbf{b} \quad$ (b) $|\mathbf{b}|$
(c) a unit vector which is in the direction of \mathbf{b}.
(d) find the unit vector which has the same direction as $\mathbf{a}+3 \mathbf{b}$.

Answer:
(a) $\langle 0,19,10\rangle$ (b) $\sqrt{53} \quad$ (c) $\left\langle-2, \frac{41}{6}, \frac{23}{3}\right\rangle$
(d) $1 \quad$ (e) $\frac{1}{\sqrt{53}}\langle-1,6,4\rangle$ (f) $\frac{1}{\sqrt{461}}\langle 0,19,10\rangle$

$\underline{\text { Parallel Vector }}$

$\checkmark \quad$ have same slopes
$\checkmark \quad v_{1}=\lambda v_{2} ; \lambda$ constants
So, there are multiples of each other.
Example:
Vector \mathbf{w} has initial point $(2,-1,3)$ and terminal point $(-4,7,5)$. Which of the following vectors is parallel to \mathbf{w} ?

Solution:
$\bar{w}=\langle-4-2,7+1,5-3\rangle$
$\bar{w}=\langle-6,8,2\rangle$
One example: $2\langle-6,8,2\rangle=\langle-12,16,4\rangle$
Another is $\frac{1}{2}\langle-6,8,2\rangle=\langle-3,4,1\rangle$.

Example: (Collinear Points)

Determine whether the point $P(1,-2,3), Q(2,1,0)$ and $R(4,7,-6)$ lie on the same line.

Solution:

$$
\begin{aligned}
& \overrightarrow{P Q}=\langle 2-1,1+2,0-3\rangle=\langle 1,3,-3\rangle \\
& |\overrightarrow{P Q}|=\sqrt{1^{2}+3^{2}+(-3)^{2}}=\sqrt{19} \\
& \overrightarrow{Q R}=\langle 4-2,7-1,-6-0\rangle=\langle 2,6,-6\rangle \\
& |\overrightarrow{Q R}|=\sqrt{2^{2}+6^{2}+(-6)^{2}}=2 \sqrt{19} \\
& \overrightarrow{P R}=\langle 4-1,7+2,-6-3\rangle=\langle 3,9,-9\rangle \\
& |\overrightarrow{P R}|=\sqrt{3^{2}+9^{2}+(-9)^{2}}=3 \sqrt{19}
\end{aligned}
$$

Thus, $\overrightarrow{P R}=\overrightarrow{P Q}+\overrightarrow{Q R}$. Since one vector is a multiple of the other, the two vectors are
parallel and since they share a common point Q, they must be the same line.

The Dot Product

-Theorem-
If $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$, then the scalar product $\mathbf{v} \cdot \mathbf{w}$ is

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{w} & =\left\langle v_{1}, v_{2}, v_{3}\right\rangle \cdot\left\langle w_{1}, w_{2}, w_{3}\right\rangle \\
& =v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
\end{aligned}
$$

-Note-
The dot product is also called

- the scalar product
- the inner product

The dot product of two vectors is a scalar.

The Angle between Vectors
Refer to the figure below, let

$$
\begin{aligned}
& \bar{u}=\bar{u}(O P)=\left\langle u_{1}, u_{2}, u_{3}\right\rangle, \\
& \bar{v}=\bar{v}(O Q)=\left\langle v_{1}, v_{2}, v_{3}\right\rangle
\end{aligned}
$$

be two vectors and let θ be the angle between them, with $0 \leq \theta \leq \pi$.

Compute the distance, c between points P and Q in two ways.

1) Using the Distance formula

$$
\begin{align*}
c^{2}= & \left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2} \\
= & u_{1}^{2}+u_{2}^{2}+u_{3}^{2}+v_{1}^{2}+v_{2}^{2}+v_{3}^{2} \\
& -2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \\
= & |\bar{u}|^{2}+|\bar{v}|^{2}-2\left(u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}\right) \tag{1}
\end{align*}
$$

2) Using the Law of Cosines

$$
c^{2}=|\bar{u}|^{2}+|\bar{v}|^{2}-2|\bar{u}||\bar{v}| \cos \theta \quad--(2)
$$

Equating equation (1) and (2), we get

$$
\cos \theta=\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{|\bar{u}||\bar{v}|}=\frac{\bar{u} \cdot \bar{v}}{|\bar{u}||\bar{v}|}
$$

Example:

If $\mathbf{v}=2 \mathbf{i} \mathbf{- j}+\mathbf{k}, \mathbf{w}=\mathbf{i}+\mathbf{j}+2 \mathbf{k}$ and the angle between \mathbf{v} and \mathbf{w} is 60°, find $\mathbf{v} \cdot \mathbf{w}$.

Solution:

$$
\begin{aligned}
\bar{v} \cdot \bar{w} & =\sqrt{2^{2}+(-1)^{2}+1^{2}} \cdot \sqrt{1^{2}+1^{2}+2^{2}} \cos (\pi / 3) \\
& =\sqrt{6} \cdot \sqrt{6} \cos (\pi / 3)=6(1 / 2)=3
\end{aligned}
$$

Example:

Given that $\mathbf{u}=\langle 2,-2,3\rangle, \mathbf{v}=\langle 5,8,1\rangle$ and
$\mathbf{w}=\langle-4,3,-2\rangle$, find
(a) $\mathbf{u} \cdot \mathbf{v}$
(b) $(\mathbf{u} \cdot \mathbf{v}) \mathbf{w}$
(c) $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})$
(d) the angle between \mathbf{u} and \mathbf{v}
(e) the angle between \mathbf{v} and \mathbf{w}.

Answer:
(a) -3
(b) $\langle 12,-9,6\rangle$
(c) -23
(d) $94^{\circ} 24^{\prime}$
(e) $87^{\circ} 46^{\prime}$

Example:

Let $A=(4,1,2), B=(3,4,5)$ and $C=(5,3,1)$ are
the vertices of a triangle. Find the angle at vertex A.

Answer:

$79^{\circ} 12^{\prime}$
-Theorem-
The nature of an angle θ, between two vectors \mathbf{u} and \mathbf{v}.
$\checkmark \theta$ is an acute angle if and only if $\mathbf{u} \cdot \mathbf{v}>0$
$\checkmark \theta$ is an obtuse angle if and only if $\mathbf{u} \cdot \mathbf{v}<0$
$\checkmark \theta=90^{\circ}$ if and only if $\mathbf{u} \cdot \mathbf{v}=0$. The
Vectors \mathbf{u} and \mathbf{v} are orthogonal / perpendicular.

Example:
Show that the given vectors are perpendicular to each other.
(a) \mathbf{i} and \mathbf{j}
(b) $3 \mathbf{i}-7 \mathbf{j}+2 \mathbf{k}$ and $10 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$
-Theorem-
(Properties of Dot Product)
If \mathbf{u}, \mathbf{v} and \mathbf{w} are nonzero vectors and k is a scalar,

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$
2. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$
3. $k \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot k \mathbf{v}$
4. $\mathbf{v} \cdot \mathbf{v}=\mid \mathbf{v}^{2}$
5. $\mathbf{u} \cdot \mathbf{0}=\mathbf{0} \cdot \mathbf{u}=0$
