

College of Sciences Department of Cybersecurity

جامصعة المستقبل AL MUSTAQBAL UNIVERSITY

> كلية العلوم قسم الأمن السيبراني

Lecture 03: (Operating systems)

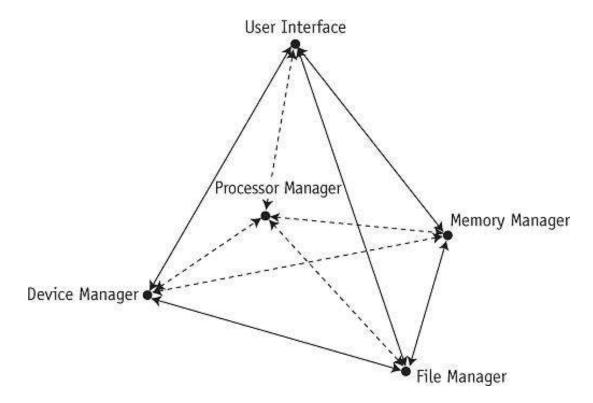
وصف المحاضرة: نظام التشغيل

Subject: Computer Organization and Logic Design First Stage: Semester II Lecturer: Dr. Muamer Nafaa Mohammed

College of Sciences Department of Cybersecurity

OPERATING SYSTEMS

Introduction:


- Manage computer system hardware and software
 - This text explores:
 - > What they are
 - How they work
 - > What they do
 - > Why they do it
- What is an Operating System?
 - Computer system
 - Software (programs)
 - Hardware (tangible machine/electronic components)
 - Operating system
 - Chief software component
 - Manages all hardware and all software and controls:
 - Every file, device, section of main memory, and moment of processing time
 - ✓ Who can use the system and how system is used.

Department of Cybersecurity

- Includes four essential subsystem managers
 - Memory Manager
 - Processor Manager
 - Device Manager
 - ➢ File Manager
- Each manager:
 - Works closely with other managers
 - > Performs a unique role

Figure 1.1: This pyramid represents an operating system on a stand-alone computer unconnected to a network. It shows the four subsystem managers and the User Interface.

Page | 3

College of Sciences Department of Cybersecurity

• User Interface

> Allows the user to issue commands to the operating system

- Manager tasks
 - Monitor the system's resources continuously
 - Enforce policies determining:
 - ✓ Who gets what, when, and howmuch?
 - Allocate a resource (when appropriate)

Deallocate a resource (when appropriate)

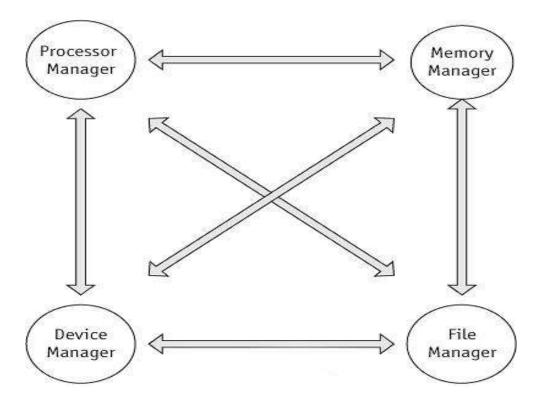


Figure 1.2: Each manager at the base of the pyramid takes responsibility for its own tasks while working harmoniously with every other manager.

Department of Cybersecurity

Network Manager

- Coordinates the services required for multiple systems to work cohesively together
 - Shared network resources: memory space, processors,

printers, databases, applications, etc.

Main Memory Management

- In charge of main memory
 - Random access memory (RAM)
 - Requires constant flow of electricity to hold data

Responsibilities include:

- Checking validity and legality of memory space request
- Reallocating memory to make more useable space available
- Deallocating memory to reclaim it
- Protecting space in main memory occupied by operating system

Al- Mustaqbal University College of Sciences

Department of Cybersecurity

• Read-only memory (ROM)

- Another type of memory
- Critical when computer is powered on
- Holds firmware: programming code
 - > When and how to load each piece of the operating

system after the power is turned on

- Non-volatile
 - Contents retained when the power is turned off

Processor Management

- Allocation of Central Processing Unit (CPU)
- Tracks process status
 - Program's "instance of execution"
- Comparable to a traffic controller
 - When a process is finished or maximum computation time expired
 - Processor Manager reclaims the CPU and allocates to next waiting process
- Computer with multiple CPUs
 - More complex management

College of Sciences Department of Cybersecurity

Device Management

- In charge of connecting with every available device
 - Printers, ports, disk drives, etc.
- Responsibilities include:
 - Choosing most efficient resource allocation method
 - ✓ Based on scheduling policy
 - Identifying each device uniquely
 - Starting device operation (when appropriate)
 - Monitoring device progress
 - Deallocating the device

File Management

- In charge of tracking every file in the system
 - Data files, program files, compilers, application programs,

etc.

- Responsibilities include:
 - Enforcing user/program resource access restrictions
 - ✓ Uses predetermined access policies
 - Controlling user/program modification restrictions
 - ✓ Read-only, read-write, create, delete

- Allocating space for a file on secondary storage
 - ✓ One large storage area or smaller linked pieces
- Retrieving files efficiently

Network Management

- Included in operating systems with networking capability
- Authorizes users to share resources
 - Overall responsibility for every aspect of network

connectivity

✓ Devices, files, memory space, CPU capacity, etc.

User Interface

- Portion of the operating system
 - Direct interaction with users
- Two primary types
 - Graphical user interface (GUI)
 - ✓ Input from pointing device
 - ✓ Menu options, desktops, and formats vary
 - Command line interface
 - ✓ Keyboard-typed commands that display on a monitor

 Strict requirements for every command: typed accurately; correct syntax; combinations of commands assembled correctly

Cooperation Issues

- No single manager performs tasks in isolation
- Each element of an operating system
 - Performs individual tasks and
 - Harmoniously interacts with other managers
 - Incredible precision required for operating system to work smoothly
 - $\checkmark\,$ More complicated when networking is involved

Cloud Computing

- Practice of using Internet-connected resources
 - > Performing processing, storage, or other operations
- Operating system maintains responsibility
 - Managing all local resources and coordinating data transfer to and from the cloud
- Role of the operating system

College of Sciences Department of Cybersecurity

- Accessing resources
- Managing the system efficiently
- An Evolution of Computing Hardware
 - Computer classification
 - At one time: based on memory capacity
 - Current platforms
- Types of Operating Systems (1 of 6)
 - Five categories
 - Batch
 - ➤ Interactive
 - ➢ Real-time
 - ➤ Hybrid
 - Embedded

Page | 10

College of Sciences Department of Cybersecurity

Two distinguishing features

- Response time
- Method of data entry into the system
- Batch systems: jobs entered as a whole and in sequence
 - Input relied on punched cards or tape
 - Efficiency measured in throughput
- Interactive systems: allow multiple jobs
 - Faster turnaround than batch systems
 - Slower than real-time systems
 - Introduced to provide fast turnaround when debugging programs
 - Complex algorithms: share processing power

College of Sciences Department of Cybersecurity

Hybrid systems

- Combination of batch and interactive
- Light interactive load
 - Accepts and runs batch programs in the background

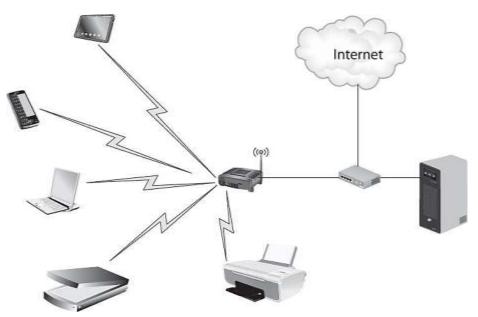
Real-Time Systems

- Reliability is critical
- Used in time-critical environments
 - Spacecraft, airport traffic control, fly-by-wire aircraft, critical industrial processes, medical systems, etc.
- Two types of real-time systems
 - > Hard real-time systems: risk total system failure if the

predicted time deadline is missed

Soft real-time systems: suffer performance degradation

as a consequence of a missed deadline


College of Sciences Department of Cybersecurity

Network operating systems

- Special class of software
 - Users perform tasks using few, if any, local resources,
 - e.g., cloud computing
- Wireless networking capability
 - Standard feature in many computing devices: cell

phones, tablets, and other handheld Web browsers

Figure 1.10: Example of a simple network. The server is connected by cable to the router and other devices connect wirelessly.

College of Sciences Department of Cybersecurity

Embedded systems

- Computers placed inside other products
 - Automobiles, digital music players, elevators,

pacemakers, etc.

- Adds features and capabilities
- Operating system requirements
 - Perform specific set of programs
 - Non-interchangeable among systems
 - Small kernel and flexible function capabilities