# Thermodynamics 

# Lecture : The First Law of Thermodynamics 

th Class1Grade:

Dr.Haleemah Jaber Mohmmed

2024-2023

## The First Law of Thermodynamics

The change in internal energy of a closed system will be equal to the energy added to the system minus the work done by the system on its surroundings.

$$
\begin{equation*}
\Delta U=Q-W \tag{15-1}
\end{equation*}
$$

This is the law of conservation of energy, written in a form useful to systems involving heat transfer.

Thermodynamic Processes and the First Law

- Adiabatic - no heat transferred
- Isothermal - constant temperature
- Isobaric - constant pressure
- Isochoric - constant volume


## 1- Adiabatic Process

An adiabatic process is one where there is no heat flow into or out of the system.


- An adiabatic process transfers no heat -therefore $\mathrm{Q}=0$
- $\Delta \mathrm{U}=\mathrm{Q}$ - W
- When a system expands adiabatically, W is positive (the system does work) so $\Delta \mathrm{U}$ is negative.
- When a system compresses adiabatically, W is negative (work is done on the system) so $\Delta U$ is positive.


## 2- An isothermal process



An isothermal process is one where the temperature does not change.

© 2014 Pearson Education, Inc.

- An isothermal process is
a constant temperature process. Arıy heat flow into or out of the system must be slow enough to maintain thermal equilibrium
- For ideal gases, if $\Delta T$ is zero, $\Delta U=0$
- Therefore, $\mathrm{Q}=\mathrm{W}$
-Any energy entering the system (Q) must leave as work (W)


# In order for an isothermal proce 

 to take place, we assume the system is in contact with a heat reservoir.In general, we assume that the system remains in equilibrium throughout all processes.

## 3- An isobaric process (a)

An isobaric process (a) occurs at constant pressure; an isovolumetric one (b) at constant volume.

(a) Isobaric

(b) Isovolumetric

If the pressure is constant, the work done is the pressure multiplied by the change in volume:
$W=P \Delta V . \quad[$ constant pressure $]$
In an isometric process, the volume does not change, so the work done is zero.

- An isobaric process is a constant pressure process. $\Delta \mathrm{U}, \mathrm{W}$, and Q are generally non-zero, but calculating the work done by an ideal gas is straightforward

$$
\mathrm{W}=\mathrm{P} \cdot \Delta \mathrm{~V}
$$

- Water boiling in a saucepan is an example of an isobar process


## 4- Isochoric Process

- An isochoric process is a constant volume process. When the volume of a system doesn't change, it will do no work on its surroundings. W = 0

$$
\Delta U=Q
$$

- Heating gas in a closed container is an isochoric process


## Thermodynamic Processes and the First Law

TABLE 15-1 Simple Thermodynamic Processes and the First Law

| Process | What is constant: | The first law, $\Delta \boldsymbol{U}=\boldsymbol{Q}-\boldsymbol{W}$, predicts: |
| :--- | :--- | :--- |
| Isothermal | $T=\mathrm{constant}$ | $\Delta T=0$ makes $\Delta U=0$, so $Q=W$ |
| Isobaric | $P=\mathrm{constant}$ | $Q=\Delta U+W=\Delta U+P \Delta V$ |
| Isovolumetric | $V=$ constant | $\Delta V=0$ makes $W=0$, so $Q=\Delta U$ |
| Adiabatic | $Q=0$ | $\Delta U=-W$ |

## Human Metabolism and the First Law

If we apply the first law of thermodynamics to the human body:

$$
\begin{equation*}
\Delta U=Q-W \tag{15-1}
\end{equation*}
$$

we know that the body can do work. If the internal energy is not to drop, there must be energy coming in. It isn't in the form of heat; the body loses heat rather than absorbing it. Rather, it is the chemical potential energy stored in foods.

## Heat Capacity

- The amount of heat required to raise a certain mass of a material by a certain temperature is called heat capacity

$$
Q=m c_{x} \Delta T
$$

- The constant $\mathrm{c}_{\mathrm{x}}$ is called the specific heat of substance x , (SI units of $\mathrm{J} / \mathrm{kg} \cdot \mathrm{K}$ )


## Heat Capacity of Ideal Gas

- $C_{V}=$ heat capacity at constant volume

$$
C_{V}=3 / 2 R
$$

- $C_{P}=$ heat capacity at constant pressure

$$
C_{P}=5 / 2 R
$$

- For constant volume

$$
\mathrm{Q}=\mathrm{nC}_{\mathrm{V}} \Delta \mathrm{~T}=\Delta \mathrm{U}
$$

- Example problems on the first law of thermodynamics


# Q1/ What is the name of an ideal-gas process in which no heat is transferred? 

A. Isochoric
B. Isentropic
C. Isothermal
D. Isobaric

- E. Adiabatic


## Q2/ Heat is

A. the amount of thermal energy in an object.
B.the energy that moves from a hotter object to a colder object.
C. a fluid-like substance that flows from a hotter object to a colder object.
D. both $A$ and $B$.
E. both $B$ and $C$.

# Q3/ The thermal behavior of water is characterized by the value of its 

A. heat density.
B. heat constant.
C. specific heat.
D. thermal index.

Q / 5000 J of heat are added to two moles of an ideal monatomic gas initially at a temperature of 500 K , while the gas performs 7500 J of work. What is the final temperature of the gas?

- Solution

$$
\begin{aligned}
& \Delta U=Q-W=5000 \mathrm{~J}-7500 \mathrm{~J}=-2500 \mathrm{~J} \\
& \\
& \quad \Delta U=-2500 \mathrm{~J}=\left(\begin{array}{ll}
3 & 2
\end{array}\right) n R \Delta T=\left(\begin{array}{ll}
3 & 2
\end{array}\right)(2)(8.31) \Delta T \\
& \\
& \rightarrow \Delta T=-100 \mathrm{~K} \\
& \\
& \rightarrow T_{f}=500 \mathrm{~K}-100 \mathrm{~K}-400 \mathrm{~K}
\end{aligned}
$$

- comment : the gas does more work than it takes in as heat, so it must use

2500 J of its internal energy.

Q / Compute the internal energy change and temperature change for the two processes i: mole of an ideal monatomic gas.

A-1500 J of heat are added to the gas and the gas does no work and no work is done on the gas
B- 1500 J of work are done on the gas and the gas does no work and no heat is added or taken away from the gas

- Solution
- A

$$
\begin{aligned}
\Delta \mathrm{U} & =\mathrm{Q}-\mathrm{W}=1500 \mathrm{~J}-0=1500 \mathrm{~J} \\
\Delta \mathrm{U} & =1500 \mathrm{~J}=\left(\begin{array}{ll}
3 & 2
\end{array}\right) \mathrm{nR} \Delta \mathrm{~T}=\left(\begin{array}{ll}
3 & 2
\end{array}\right)(1)(8.31) \Delta \mathrm{T} \\
& \rightarrow \Delta \mathrm{~T}=120 \mathrm{~K}
\end{aligned}
$$

B

$$
\begin{aligned}
& \Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}=0-(-1500 \mathrm{~J})=+1500 \mathrm{~J} \\
& \Delta \mathrm{U}=1500 \mathrm{~J}=(32) \mathrm{nR} \Delta \mathrm{~T}=(32)(1)(8.31) \Delta \mathrm{T} \\
& \rightarrow \Delta \mathrm{~T}=120 \mathrm{~K}
\end{aligned}
$$

- Notice that in both processes, the change in internal energy is the same. We say that the internal energy is a "state function". A state function depends only on the state of the system and not on the process that brings the system to that particular state.


# Do You Have Questions? 



