Example (2):

Ammonia is to be removed from a 10 percent ammonia-air mixture by countercurrent absorption with water in a packed tower at 293 K . The outlet gas concentration from the top of the tower is 0.1%. The absorption tower is working at a total pressure of $101.3 \mathrm{kN} / \mathrm{m}^{2}$. If the inlet gas is $0.034 \mathrm{kmol} / \mathrm{m}^{2}$.s and the liquid rate is $0.036 \mathrm{kmol} / \mathrm{m}^{2}$. s , find the necessary height of the tower if the absorption coefficient KoG. $\mathrm{a}=0.081 \mathrm{kmol} / \mathrm{m}^{3}$.s. The equilibrium data is given by the following data:

$\mathrm{kmol} \mathrm{NH}_{3} / \mathrm{kmol}$ water:	0.021	0.031	0.042	0.053	0.079	0.106	0.159
Partial pressure NH_{3} in gas phase $\left(\mathrm{kN} / \mathrm{m}^{2}\right):$	1.6	2.4	3.3	4.2	6.7	9.3	15.2

Solution:

First of all we have to convert the equilibrium data to mole ratio:
mole fraction of NH_{3} in gas phase , $y_{N H_{3}}=\frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{T}}}=\frac{1.6}{101.3}=\mathbf{0 . 0 1 5 8}$
mole ratio of NH_{3} in gas phase, $\mathrm{Y}_{\mathrm{NH}_{3}}=\frac{y_{N H_{3}}}{1-y_{N H_{3}}}=\frac{0.0158}{1-0.0158}=\mathbf{0 . 0 1 6 0}$
The equilibrium data becomes:

$\mathbf{X}_{\mathbf{N H}_{3}}$	0.021	0.031	0.042	0.053	0.079	0.106	0.159
$\mathbf{Y}_{\mathbf{N H}_{\mathbf{3}}}$	$\mathbf{0 . 0 1 6 0}$	0.0243	0.0337	0.0433	0.0708	0.1011	0.1765

$\mathrm{HOG}=\frac{\overline{\mathrm{G}}_{\mathrm{s}}}{\text { KoG. } \mathrm{a}}=\frac{0.034}{0.081}=0.419 \mathrm{~m}$
$N O G=\int_{\mathbf{Y}_{2}}^{\mathbf{Y}_{1}} \frac{\mathrm{dY}}{\left(\mathbf{Y}-\mathbf{Y}^{*}\right)}$

The equilibrium data may be not linear relation, so that the integration should be solved by plotting or by Simpson's rule as follows:

1. Draw the equilibrium data:
2. Draw the operating line from two points:

$$
\left(\mathbf{X}_{1}, \mathbf{Y}_{1}\right) \text { and }\left(\mathbf{X}_{2}, \mathbf{Y}_{\mathbf{2}}\right)
$$

$\mathbf{Y}_{\mathbf{1}}=\frac{\mathrm{y}_{1}}{1-\mathrm{y}_{1}}=\frac{0.1}{1-0.1}=0.11$
$\mathbf{Y}_{2}=\frac{\mathrm{y}_{2}}{1-\mathrm{y}_{2}}=\frac{0.001}{1-0.001}=0.001$
Overall ammonia material balance:
$\overline{\mathbf{G}}_{\mathbf{s}}\left(\mathbf{Y}_{\mathbf{1}}-\mathbf{Y}_{2}\right)=\overline{\mathbf{L}}_{\mathbf{s}}\left(\mathbf{X}_{\mathbf{1}}-\mathbf{X}_{2}\right)$
$X_{1}=\frac{\bar{G}_{s}}{\overline{\mathbf{L}}_{\mathrm{s}}}\left(\mathrm{Y}_{1}-\mathrm{Y}_{2}\right)+\mathrm{X}_{2}=\frac{0.034}{0.036}(0.11-0.001)+0$
$\mathbf{X}_{\mathbf{1}}=0.0935$

Operating line:

$\left(\mathbf{X}_{1}, \mathbf{Y}_{\mathbf{1}}\right)=(0.0935,0.11)=\left(9.35 * 10^{-2}, 10^{*} 10^{-2}\right)$

$$
\left(\mathbf{X}_{2}, \mathbf{Y}_{2}\right)=(0,0.001)=\left(0,0.1 * 10^{-2}\right)
$$

We will solve the integration by Simpson's rule:

$$
\mathbf{h}=\frac{\mathbf{Y}_{\mathbf{1}}-\mathbf{Y}_{\mathbf{2}}}{\mathbf{n}} \quad, \quad \text { We choose } \quad n=4
$$

$\mathbf{h}=\frac{\mathbf{0 . 1 1 - 0 . 0 0 1}}{\mathbf{4}}=0.02725$

Calculate \mathbf{Y}^{*} from the plot as follows:

\mathbf{Y} Assume points between $\left(\mathrm{Y}_{1}-\mathrm{Y}_{2}\right)$	\mathbf{Y}^{*} Calculated from plot	$\frac{\mathbf{1}}{\left(\mathbf{Y}-\mathbf{Y}^{*}\right)}$
0.11	0.088	$45.45=\mathrm{f}_{0}$
0.08275	0.061	$45.98=\mathrm{f}_{1}$
0.05550	0.0375	$55.56=\mathrm{f}_{2}$
0.02825	0.0175	$93.02=\mathrm{f}_{3}$
0.001	0.00	$1000=\mathrm{f}_{\mathrm{n}}$

$$
\begin{aligned}
& \text { NOG }=\frac{h}{3}\left[f_{0}+f_{n}+2 \sum f_{\text {even }}+4 \sum f_{\text {odd }}\right] \\
& \text { NOG }=\frac{0.02725}{3}[45.45+\mathbf{1 0 0 0}+\mathbf{2}(55.56)+\mathbf{4}[(\mathbf{4 5 . 9 8})+(\mathbf{9 3 . 0 2})]] \\
& \text { NOG }=15.56 \\
& \mathbf{Z}=\mathbf{H O G} * \mathbf{N O G}=(0.419)(15.56)=6.52 \mathrm{~m}
\end{aligned}
$$

