Example (2):

Ammonia is to be removed from a 10 percent ammonia–air mixture by countercurrent absorption with water in a packed tower at 293 K. The outlet gas concentration from the top of the tower is 0.1%. The absorption tower is working at a total pressure of 101.3 kN/m². If the inlet gas is 0.034 kmol/m².s and the liquid rate is 0.036 kmol/m². s, find the necessary height of the tower if the absorption coefficient KoG.a = 0.081 kmol/m³.s. The equilibrium data is given by the following data:

kmol NH ₃ /kmol water:	0.021	0.031	0.042	0.053	0.079	0.106	0.159
Partial pressure NH ₃ in gas phase (kN/m ²):	1.6	2.4	3.3	4.2	6.7	9.3	15.2

Solution:

First of all we have to convert the equilibrium data to mole ratio:

mole fraction of NH_3 in gas phase , $y_{NH_3} = \frac{P_A}{P_T} = \frac{1.6}{101.3} = 0.0158$

mole ratio of NH₃ in gas phase ,
$$Y_{NH_3} = \frac{y_{NH_3}}{1 - y_{NH_3}} = \frac{0.0158}{1 - 0.0158} = 0.0160$$

The equilibrium data becomes:

X _{NH3}	0.021	0.031	0.042	0.053	0.079	0.106	0.159
Y _{NH3}	0.0160	0.0243	0.0337	0.0433	0.0708	0.1011	0.1765

HOG =
$$\frac{\overline{G}_{s}}{\text{KoG. a}} = \frac{0.034}{0.081} = 0.419 \text{ m}$$

NOG = $\int_{Y_2}^{Y_1} \frac{dY}{(Y - Y^*)}$

The equilibrium data may be not linear relation, so that the integration should be solved by plotting or by Simpson's rule as follows:

- 1. Draw the equilibrium data:
- 2. Draw the operating line from two points:

(X1, Y1) and (X2, Y2)

$$\mathbf{Y_1} = \frac{\mathbf{y_1}}{1 - \mathbf{y_1}} = \frac{0.1}{1 - 0.1} = 0.11$$

$$\mathbf{Y_2} = \frac{\mathbf{y}_2}{1 - \mathbf{y}_2} = \frac{0.001}{1 - 0.001} = 0.001$$

Overall ammonia material balance:

$$\overline{G}_{s} (Y_{1} - Y_{2}) = \overline{L}_{s} (X_{1} - X_{2})$$
$$X_{1} = \frac{\overline{G}_{s}}{\overline{L}_{s}} (Y_{1} - Y_{2}) + X_{2} = \frac{0.034}{0.036} (0.11 - 0.001) + 0$$
$$X_{1} = 0.0935$$

Operating line:

$$(X_1, Y_1) = (0.0935, 0.11) = (9.35*10^{-2}, 10*10^{-2})$$

 $(X_2, Y_2) = (0, 0.001) = (0, 0.1*10^{-2})$

We will solve the integration by Simpson's rule:

$$\mathbf{h} = \frac{\mathbf{Y_1} - \mathbf{Y_2}}{\mathbf{n}}$$
 , We choose $n = 4$

$$\mathbf{h} = \frac{\mathbf{0.11} - \mathbf{0.001}}{\mathbf{4}} = 0.02725$$

Calculate \mathbf{Y}^* from the plot as follows:

Y	Y *	
Assume points between $(Y_1 - Y_2)$	Calculated from plot	$(\mathbf{Y} - \mathbf{Y}^*)$
0.11	0.088	$45.45 = f_0$
0.08275	0.061	$45.98 = f_1$
0.05550	0.0375	$55.56 = f_2$
0.02825	0.0175	$93.02 = f_3$
0.001	0.00	$1000 = f_n$

$$NOG = \frac{h}{3} \left[f_0 + f_n + 2 \sum f_{even} + 4 \sum f_{odd} \right]$$

$$NOG = \frac{0.02725}{3} [45.45 + 1000 + 2(55.56) + 4[(45.98) + (93.02)]]$$

NOG = 15.56

 $\mathbf{Z} = \mathbf{HOG} * \mathbf{NOG} = (0.419) (15.56) = 6.52 \text{ m}$

