Equilibrium Relations Between Gas and Liquid Phases: The equilibrium of any gas-liquid system can be expressed as: Non-ideal system (Henry's law): Ideal system (Raoult's law): $$P_{A} = H x_{A} \qquad \text{divided by (P_{T})} \qquad \qquad P_{A} = P_{A}^{0} x_{A} \qquad \text{divided by (P_{T})}$$ $$\frac{P_{A}}{P_{T}} = \frac{H}{P_{T}} x_{A} \qquad \qquad \frac{P_{A}}{P_{T}} = \frac{P_{A}^{0}}{P_{T}} x_{A}$$ $$\mathbf{y}_{A} = \mathbf{m} x_{A} \qquad \qquad \mathbf{y}_{A} = \mathbf{m} x_{A}$$ * في عمليات الامتصاص من المهم جدا معرفة طبيعة علاقة التعادل (وهوه العلاقة بين تركيز المذاب (A) في الغاز (\mathbf{Y}_A) مع تركيز المذاب(\mathbf{A}) في السائل (\mathbf{X}_A)). فقد تكون علاقة التعادل بين (\mathbf{X}_A) و (\mathbf{Y}_A) علاقة خطية أو علاقة غير خطية اعتمادا على طبيعة المواد وتركيز المذاب. Where: X_A : is the mole ratio of solute in liquid phase (A/C). $\mathbf{Y}_{\mathbf{A}}$: is the mole ratio of solute in gas phase (A/B). #### **Notes:** The equilibrium relation is the ratio between the *mole ratio* of solute in gas phase (Y_A) and the *mole ratio* of solute in liquid phase (X_A) . The equilibrium relation may be linear or no linear. - $\mathbf{Y}_{A}=m~\mathbf{X}_{A}$). اذا كانت علاقة التعادل خطية فتعطى بالشكل التالى (- اما اذا أعطيت علاقة التعادل بشكل بيانات كما في ادناه: $$\mathbf{X}_{\mathbf{A}}$$ - - - - - - - - - $$\mathbf{Y}_{\mathbf{A}}$$ - - - - - - - - ففي هذه الحالة لمعرفة طبيعة علاقة التعادل فيتم رسم البيانات أو لا فاذا كان الرسم بين XA و YA خط مستقيم عند ذلك سيتم اخذ الميل من الرسم فقط وتكون علاقة التعادل $\mathbf{Y}_{\mathbf{A}} = \mathbf{m} \ \mathbf{X}_{\mathbf{A}}$ اما اذا كان الرسم الناتج بين XA و YA بشكل منحنى فعند ذلك سيكون الحل بالرسم * في بعض الأحيان تعطى علاقة التعادل بين الضغط الجزئي (P_A) والنسبة المولية (x_A) كما في علاقة راؤول او هنري ففي هذه الحالة يجب تحويلها الى علاقة بين (X_A, Y_A) . # The relation between the mole fraction and mole ratio: $$\mathbf{Y_A} = \frac{\mathbf{y_A}}{1 - \mathbf{y_A}}$$ and $$\mathbf{X_A} = \frac{\mathbf{x_A}}{1 - \mathbf{x_A}}$$ Where: $\mathbf{x}_{\mathbf{A}}$ and $\mathbf{y}_{\mathbf{A}}$: are the mole fractions of solute (A) in liquid and gas phases, respectively. X_A and Y_A : are the mole ratio of solute (A) in liquid and gas phases, respectively. ## The relation between the mole fraction and weight fraction: $$wt. \% = \frac{mol\% * (M.wt)}{mol\% * (M.wt)}$$ $$mol\% = \frac{wt.\% (M.wt)}{wt.\% /(M.wt)}$$ Where: wt. %: is the weight fraction. **mol**%: is the mole fraction. **M. wt**: is the molecular weight. # **Symbols used in the absorption processes:** A solute (A) in a mixture (A, B) shall be absorbed in Liquid (C), the inert gas (B) is insoluble in solvent (C). The following symbols will be used: \mathbf{G} : is the mole rate of the gas mixture (A + B), kmol/s. G_s : is the mole rate of the inert (insoluble) gas (B), kmol/s. $\overline{\mathbf{G}}$: is the mole flux of the gas mixture (A + B), kmol/m².s. $\overline{\mathbf{G}}_{\mathbf{S}}$: is the mole flux of the inert (insoluble) gas (B), kmol/m².s. L: is the mole rate of the liquid mixture (A + C), kmol/s. L_s : is the mole rate of the liquid solvent only (C), kmol/s. $\bar{\mathbf{L}}$: is the mole flux of the liquid mixture (A + C), kmol/m².s. $\bar{\mathbf{L}}_{\mathbf{s}}$: is the mole flux of the liquid solvent only (C), kmol/m².s. $\mathbf{X}_{\mathbf{A}}$: is the mole fraction of solute (A) in liquid, (A/A+C). \mathbf{y}_{A} : is the mole fraction of solute (A) in gas, (A/A+B). $\mathbf{X}_{\mathbf{A}}$: is the mole ratio of solute (A) in liquid, (A/C). Y_A : is the mole ratio of solute (A) in gas, (A / B). YA