Equilibrium Relations Between Gas and Liquid Phases:

The equilibrium of any gas-liquid system can be expressed as:

Non-ideal system (Henry's law):

Ideal system (Raoult's law):

$$P_{A} = H x_{A} \qquad \text{divided by (P_{T})} \qquad \qquad P_{A} = P_{A}^{0} x_{A} \qquad \text{divided by (P_{T})}$$

$$\frac{P_{A}}{P_{T}} = \frac{H}{P_{T}} x_{A} \qquad \qquad \frac{P_{A}}{P_{T}} = \frac{P_{A}^{0}}{P_{T}} x_{A}$$

$$\mathbf{y}_{A} = \mathbf{m} x_{A} \qquad \qquad \mathbf{y}_{A} = \mathbf{m} x_{A}$$

* في عمليات الامتصاص من المهم جدا معرفة طبيعة علاقة التعادل (وهوه العلاقة بين تركيز المذاب (A) في الغاز (\mathbf{Y}_A) مع تركيز المذاب(\mathbf{A}) في السائل (\mathbf{X}_A)). فقد تكون علاقة التعادل بين (\mathbf{X}_A) و (\mathbf{Y}_A) علاقة خطية أو علاقة غير خطية اعتمادا على طبيعة المواد وتركيز المذاب.

Where:

 X_A : is the mole ratio of solute in liquid phase (A/C).

 $\mathbf{Y}_{\mathbf{A}}$: is the mole ratio of solute in gas phase (A/B).

Notes:

The equilibrium relation is the ratio between the *mole ratio* of solute in gas phase (Y_A) and the *mole ratio* of solute in liquid phase (X_A) . The equilibrium relation may be linear or no linear.

- $\mathbf{Y}_{A}=m~\mathbf{X}_{A}$). اذا كانت علاقة التعادل خطية فتعطى بالشكل التالى (
 - اما اذا أعطيت علاقة التعادل بشكل بيانات كما في ادناه:

$$\mathbf{X}_{\mathbf{A}}$$
 - - - - - - - - -

$$\mathbf{Y}_{\mathbf{A}}$$
 - - - - - - - -

ففي هذه الحالة لمعرفة طبيعة علاقة التعادل فيتم رسم البيانات أو لا فاذا كان الرسم بين XA و YA خط مستقيم

عند ذلك سيتم اخذ الميل من الرسم فقط وتكون علاقة التعادل $\mathbf{Y}_{\mathbf{A}} = \mathbf{m} \ \mathbf{X}_{\mathbf{A}}$ اما اذا كان الرسم الناتج

بين XA و YA بشكل منحنى فعند ذلك سيكون الحل بالرسم

* في بعض الأحيان تعطى علاقة التعادل بين الضغط الجزئي (P_A) والنسبة المولية (x_A) كما في علاقة راؤول او هنري ففي هذه الحالة يجب تحويلها الى علاقة بين (X_A, Y_A) .

The relation between the mole fraction and mole ratio:

$$\mathbf{Y_A} = \frac{\mathbf{y_A}}{1 - \mathbf{y_A}}$$

and

$$\mathbf{X_A} = \frac{\mathbf{x_A}}{1 - \mathbf{x_A}}$$

Where:

 $\mathbf{x}_{\mathbf{A}}$ and $\mathbf{y}_{\mathbf{A}}$: are the mole fractions of solute (A) in liquid and gas phases, respectively.

 X_A and Y_A : are the mole ratio of solute (A) in liquid and gas phases, respectively.

The relation between the mole fraction and weight fraction:

$$wt. \% = \frac{mol\% * (M.wt)}{mol\% * (M.wt)}$$

$$mol\% = \frac{wt.\% (M.wt)}{wt.\% /(M.wt)}$$

Where:

wt. %: is the weight fraction.

mol%: is the mole fraction.

M. wt: is the molecular weight.

Symbols used in the absorption processes:

A solute (A) in a mixture (A, B) shall be absorbed in Liquid (C), the inert gas (B) is insoluble in solvent (C). The following symbols will be used:

 \mathbf{G} : is the mole rate of the gas mixture (A + B), kmol/s.

 G_s : is the mole rate of the inert (insoluble) gas (B), kmol/s.

 $\overline{\mathbf{G}}$: is the mole flux of the gas mixture (A + B), kmol/m².s.

 $\overline{\mathbf{G}}_{\mathbf{S}}$: is the mole flux of the inert (insoluble) gas (B), kmol/m².s.

L: is the mole rate of the liquid mixture (A + C), kmol/s.

 L_s : is the mole rate of the liquid solvent only (C), kmol/s.

 $\bar{\mathbf{L}}$: is the mole flux of the liquid mixture (A + C), kmol/m².s.

 $\bar{\mathbf{L}}_{\mathbf{s}}$: is the mole flux of the liquid solvent only (C), kmol/m².s.

 $\mathbf{X}_{\mathbf{A}}$: is the mole fraction of solute (A) in liquid, (A/A+C).

 \mathbf{y}_{A} : is the mole fraction of solute (A) in gas, (A/A+B).

 $\mathbf{X}_{\mathbf{A}}$: is the mole ratio of solute (A) in liquid, (A/C).

 Y_A : is the mole ratio of solute (A) in gas, (A / B).

YA