Excitation Table											
Q _N	Q _{N + 1}	S	R	J	К	D	Т				
0	0	0	Х	0	Х	0	0				
0	1	1	0	1	Х	1	1				
1	0	0	1	Х	1	0	1				
1	1	Х	0	Х	0	1	0				

Conversion for Flip-Flops

Converting Flip-Flops

Here we will discuss the steps that one must use to convert one given flip-flop to another one. Let us assume that we have the required flip-flops that are to be constructed using the sub-flip-flops:

1. Drawing of the truth of the required flip-flop.

2. Writing of the corresponding outputs of those sub-flipflops that are to be used from the given excitation table.

3. Drawing of the K-Maps using the required inputs of the flip-flops and then obtaining the excitation functions for the inputs of the sub-flip-flops.

4. Construction of the logic diagram in accordance with the functions that we have obtained.

i) Conversion of SR to JK Flip-Flop

J	K	Q _N	Q _{N+1}	S	R
0	0	0	0	0	Х
0	0	1	1	Х	0
0	1	0	0	0	Х
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	Х	0
1	1	0	1	1	0
1	1	1	0	0	1

Excitation Functions

