1. Types of Data in SPSS

SPSS gives three options regarding types of data: nominal, ordinal and scale.

1. Nominal data

These are categorical (Qualitative) data that have no order. The categories within each variable are mutually exclusive: respondents can only fall into one category.

Examples of nominal variables:

- Gender - respondents can be male or female.
- Disease/health status - respondents can either have a disease or not
- Marital status - respondents can only have one marital status at a given time: single, married, divorced, widowed

2. Ordinal data

These are also categorical variables in which the categories are ordered.
Examples of ordinal variables:

- Age group - for example, 30-39, 40-49, 50-59, 60+
- Likert scales - strongly agree, agree, neither agree nor disagree, disagree, strongly disagree.
- Academic degree - assistant professor, associate professor, professor.

3. Scale data

In SPSS this covers discrete and continuous data.

Discrete data comprise variables that can only take integers (whole numbers).

Examples of discrete data:

- Number of nights spent in hospital
- Number of courses of a given drug prescribed during the study period
- Age at last birthday
- Number of cigarettes smoked in a week
$>$ Continuous data can take any value.
Examples of continuous data:
- Blood pressure
- Body mass index (BMI)
- Height of patient
- Time to recover

Exercise 1: Determine the type of the following data.

1. Number of patients
2. Place of residence
3. Hair color
4. Degree of injury in an accident
5. Type of diabetes

Exercise 2: Give examples of each type of the data.

2. Graphic Display of Frequency Distributions

Frequency distributions can be presented either in tables or graphically. Graphs have the advantage of communicating information quickly. They can also be useful to researchers themselves early in the analysis process when they are trying to understand their data. In this section, we will present some graphics tools to display frequency distributions.

Bar Graphs

There are three types of bar graphs.

1. Simple Bar

When a variable is measured on a nominal scale, or on an ordinal scale with a small number of values, researchers can construct a bar graph to display frequency information. A bar graph consists of two dimensions: a horizontal dimension (the X -axis) and a vertical dimension (the Y -axis).

In a bar graph, the categories are typically listed along the horizontal X axis, and the frequencies or percentages are displayed on the vertical Y axis. The bars above each category are drawn to the height that indicates the frequency or relative frequency for that category. In a bar graph for categorical data, the bars for adjacent categories should be drawn not touching each other; each bar width and the distance between bars should be equal.

Example 5

Construct a simple bar graph of the data in Example 4.
Using SPSS (See the video)

2. Clustered Bar

The clustered bars are used to compare between two or more subjects by drawing adjacent bars.

Example 6

The following table presents the number of nurses in a certain hospital during the years from 2016 till 2020.

year	2016	2017	2018	2019	2020
Male	20	27	32	28	26
Female	24	30	35	30	31

Construct a clustered bar graph of the data.

3. Stacked Bar

The stacked bars are used to compare between two or more subjects by dividing each column into parts proportional to the number it represents.

Example 7

Construct a stacked bar graph for the data in Example 6.

Histograms

Frequency information for interval-level and ratio-level data can be displayed in a histogram, which is a graphic display similar to a bar graph. In a histogram, however, the bars touch one another because adjacent values are not distinct categories, but rather contiguous scores on an ordered dimension.

Example 8

Construct a histogram graph for the data in Example 2 (Hear rate data) and display the normal curve.

L7

The curve Graphs

It is used to clarify the general trend of one or more phenomena during a specific period.

Example 9

1. Display the number of males data from Example 6 using a simple curve graph.
2. Display the data from Example 6 using a multiple curve graph.

The Pie Charts

The pie chart (sometimes called a circle graph) is a circle divided into pie-shaped wedges corresponding to the percentages. All the pieces of the pie must add up to 100%. The angle of a pie $=$ the frequency percentage of the pie $\times 360$.

For example, the angle of pie for married patients $=\frac{40}{100} \times 360=144$.

Example 10

Display the marital status data from Example 4 using a pie chart.

Marital Status

Marital Status					
		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Married	12	40.0	40.0	40.0
	Single	6	20.0	20.0	60.0
	Divorced	8	26.7	26.7	86.7
	Widowed	4	13.3	13.3	100.0
	Total	30	100.0	100.0	

L7

A summary of the most important graphics suitable for the different types of data

Scale			الترتيبي Ordinal		الإسمى Nominal
Line		البيانى	Bars		الأعمدة البيانية
Histograme	$\boxed{\boxed{\prime N}}$	المدرج التكراري	Subdivided bars	日里	الأعمدة البيانية المجزأة
Polygone	M	المضلع التكراري	Multiple bars	H-4	الأعمدة البيانية المتجاورة
Curve	\int	المنحنى التكراري	Pie chart		الرسوم الدائرية
Box- plot	\pm	الرسم الصندوقى			
Scatt er	${ }^{\circ}$	شكل الانتشار			

الإسمى أو الترتيبي			
Nominal or Ordinal			
تستخـام الأعمــة البيانية لمرض بيانات وصضية او عرض جاول تـكـراري بسيطـ لظاهرة واحــا	Bars	$\square \square$	الأعمهة: البيانية
تستـنـدم الأعمـاة البيانية المجززأة لعرض بيانات كـلية مقسسمة الى اجزائها المتـكاملة	Sub- divided bars		الأعمدة البيانية المجززأة
تستخـدم الأعمــة البيانية المحـزأة لـعرض بيانات متعارضـة	Multiple bars	Hn	الأعمدة البيانية المتجاورة
تستخالدم الرسوم الدائرية لـعرض بيانات ككلية مقسهـة الى اجزائها المتــاملة	Pie		الدائرية

$\begin{aligned} & \text { الـكـمي } \\ & \text { Scale } \end{aligned}$			
$b y$			
يستخدم الخط البياني لمرض بيـانات كـمية لظاهرة مأ خوذة على فترات زمنية	Line	\square	الخط البيانى
يستخدم المدرح التتكرارى لـرض بيـانات كـية لظاهرة بعـ تحويلها الى فئات متسـاوية بشـكـل اعمـدة متلاصقة	Histograme	$\boxed{\boxed{\prime \prime} / 71}$	المدرج التـكراري
يستخخدم المضلع التكرارى لمرض بيـانات كـمية لظاهرة بعـ تحويلها الى فئات متسـاوية بثشكل خطوط منـسسرة	Polygone	W	التـكـراري
يستخدم المنحنى التـكرارى لمرض بيـانات كـية لظاهرة بعد تحويلها الى فئات متسـاوية بشكـل خطوط منحنية	Curve	Ω	المنـشنى
يستخخدم الرسم الصنـدوقى لـرض بيـانات كمية لظاهرة بالاستمانة بالوسيط والربيــان.	Box- plot	\pm	الرستم الصندلدوقى
يستخدم شـكل الانتشار لمرض بيـانات كـمية لظاهرتان مرتبطتان عن طريق رسـ نقاط.	Scatter	0.0	شُـيل الانتشار

