Electrical Engineering Fundamentals

First class

AC

Lecture 2 \& 3

Dr. Saad Mutashar Abbas

2024-2025

EFFECTIVE (rmS) VALUES

The effective value (or the rms value) of an alternating waveform is given by the steady ($d c$) current which when flowing through a given circuit, for a given time produces the same heat produced by the alternating current when flowing the same circuit for the same time.

Effective value of the sinusoidal is:

$$
I_{\mathrm{eff}}=0.707 I_{m}
$$

$$
E_{\mathrm{eff}}=0.707 E_{m}
$$

The effective value of any quantity plotted as a function of time can be found by using the following equation:

$$
I_{\mathrm{eff}}=\sqrt{\frac{\int_{0}^{1} i^{2}(t) d t}{T}}
$$

$$
I_{\mathrm{eff}}=\sqrt{\frac{\operatorname{area}\left(i^{2}(t)\right)}{T}}
$$

EXAMPLE: Find the rMS values of the sinusoidal waveform

(a)

(b)

(c)

Solution:

For part (a), Irms $=0.707\left(12 * 10^{-3} \mathrm{~A}\right)=8.484 \mathrm{~mA}$. For part (b), again Irms $=8.484 \mathrm{~mA}$. Note that frequency did not change the effective value
in (b) above compared to (a). For part (c), Vrms $=0.707(169.73 \mathrm{~V}) \cong 120$ V.

EXAMPLE: Find the effective or rms value of the waveform

Solution:
$V_{\text {rms }}=\sqrt{\frac{(9)(4)+(1)(4)}{8}}=\sqrt{\frac{40}{8}}=\mathbf{2 . 2 3 6} \mathbf{V}$
EXAMPLE: Calculate the rms value of the voltage

Solution:

$V_{\mathrm{rms}}=\sqrt{\frac{(100)(2)+(16)(2)+(4)(2)}{10}}=\sqrt{\frac{240}{10}}$
$=4.899 \mathrm{~V}$
EXAMPLE: Determine the average and rms values of the square wave.

Solution:

$$
\begin{aligned}
V_{\mathrm{rms}} & =\sqrt{\frac{(1600)\left(10 \times 10^{-3}\right)+(1600)\left(10 \times 10^{-3}\right)}{20 \times 10^{-3}}} \\
& =\sqrt{\frac{32,000 \times 10^{-3}}{20 \times 10^{-3}}}=\sqrt{1600} \\
V_{\mathrm{rms}} & =\mathbf{4 0} \mathbf{V}
\end{aligned}
$$

Problem 3

Determine the effective values of
a) $i=50 \sin (w t+20) \mathrm{mA}$
b) $v=10 \cos 2 w t V$

Problem 4

The $120-\mathrm{V}$ dc source delivers 3.6 W to the load. Determine the peak value of the applied voltage (Vm) and the current (Im) if the ac source is to deliver the same power to the load.

RESPONSE OF BASIC R, L, AND C ELEMENTS TO A SINUSOIDAL VOLTAGE OR CURREN

R, L, and C circuit elements each have quite different electrical properties. Resistance, for example, opposes current, while inductance opposes changes in current, and capacitance opposes changes in voltage.

1) Resistor

For a purely resistive element, the voltage across and the current through the element are in phase, with their peak values related by Ohm's law.

For $v=V_{m} \sin \omega t$,
$i=\frac{V}{R}=\frac{V_{m} \sin \omega t}{R}=\frac{V_{m}}{R} \sin \omega t=I_{m} \sin \omega t$

$$
I_{m}=\frac{V_{m}}{R}
$$

Or
$V=i R=\left(I_{m} \sin \omega t\right) R=I_{m} R \sin \omega t=V_{m} \sin \omega t$

$$
V_{m}=I_{m} R
$$

2) Inductor

For an inductor, vL leads iL by 90°, or iL lags vL by 90°.

$$
v_{L}=L \frac{d i_{L}}{d t}
$$

$$
\begin{gathered}
\frac{d i_{L}}{d t}=\frac{d}{d t}\left(I_{m} \sin \omega t\right)=\omega I_{m} \cos \omega t \\
V_{L}=L \frac{d i_{L}}{d t}=L\left(\omega I_{m} \cos \omega t\right)=\omega L I_{m} \cos \omega t \\
V_{L}=V_{m} \sin \left(\omega t+90^{\circ}\right) \\
V_{m}=\omega L I_{m} \\
V_{L}=\omega L I_{m} \sin \left(\omega t \pm \theta+90^{\circ}\right) \\
L: V_{L} \text { leads } i_{L} \text { by } 90^{\circ}{ }_{4} \sin (\omega t \pm \theta)
\end{gathered}
$$

The quantity ωL, called the reactance (from the word reaction) of an inductor, is symbolically represented by $X L$ and is measured in ohms; that is,

$$
\begin{gather*}
X_{L}=\omega L \\
X_{L}=\frac{V_{m}}{I_{m}}
\end{gather*}
$$

$$
X_{L}=\omega L=2 \pi f L=2 \pi L f
$$

3) Capacitor

For a particular capacitance, the greater the rate of change of voltage across the capacitor, the greater the capacitive current.

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

$$
\begin{gathered}
\frac{d V_{C}}{d t}=\frac{d}{d t}\left(V_{m} \sin \omega t\right)=\omega V_{m} \cos \omega t \\
i_{C}=C \frac{d V_{C}}{d t}=C\left(\omega V_{m} \cos \omega t\right)=\omega C V_{m} \cos \omega t \\
i_{C}=I_{m} \sin \left(\omega t+90^{\circ}\right) \\
I_{m}=\omega C V_{m}
\end{gathered}
$$

For a capacitor, iC leads vC by 90°, or $v C$ lags iC by 90°.

$$
\begin{gathered}
V_{C}=V_{m} \sin (\omega t \pm \theta) \\
i_{C}=\omega C V_{m} \sin \left(\omega t \pm \theta+90^{\circ}\right)
\end{gathered}
$$

The quantity $1 / \omega C$, called the reactance of a capacitor, is symbolically represented by $X C$ and is measured in ohms; that is,

$$
X_{C}=\frac{1}{\omega C}
$$

$$
X_{C}=\frac{V_{m}}{I_{m}}
$$

$$
X_{C}=\frac{1}{2 \pi f C}
$$

EXAMPLE: The voltage across a resistor is indicated. Find the sinusoidal expression for the current if the resistor is 10Ω. Sketch the curves for v and i.
a) $v=100 \sin 377 t$
b) $v=25 \sin \left(377 t+60^{\circ}\right)$

Solutions:

a)
$I_{m}=\frac{V_{m}}{R}=\frac{100 \mathrm{~V}}{10 \Omega}=10 \mathrm{~A}$
(V and i are in phase)

$$
i=\mathbf{1 0} \sin 377 t
$$

b)

$$
I_{m}=\frac{V_{m}}{R}=\frac{25 \mathrm{~V}}{10 \Omega}=2.5 \mathrm{~A}
$$

(V and i are in phase) $\quad i=\mathbf{2 . 5} \sin \left(\mathbf{3 7 7} \boldsymbol{t}+\mathbf{6 0}^{\circ}\right)$

EXAMPLE: The current through a $0.1-\mathrm{H}$ coil is provided. Find the sinusoidal expression for the voltage across the coil. Sketch the v and i curves.
a) $i=10 \sin 377 t$
b) $i=7 \sin \left(377 t _70^{\circ}\right)$

Solutions:

a)
$X_{L}=\omega L=(377 \mathrm{rad} / \mathrm{s})(0.1 \mathrm{H})=37.7 \Omega$
$V_{m}=I_{m} X_{L}=(10 \mathrm{~A})(37.7 \Omega)=377 \mathrm{~V}$
v leads i by 90°

$$
V=377 \sin \left(377 t+90^{\circ}\right)
$$

b)
$V_{m}=I_{m} X_{L}=(7 \mathrm{~A})(37.7 \Omega)=263.9 \mathrm{~V}$
V leads i by $90^{\circ} \quad V=263.9 \sin \left(377 t-70^{\circ}+90^{\circ}\right)$

$$
V=263.9 \sin \left(377 t+20^{\circ}\right)
$$

EXAMPLE: The voltage across a $1-\mu \mathrm{F}$ capacitor is provided below. What is the sinusoidal expression for the current? Sketch the v and i curves. $v=30 \sin 400 t$

Solutions:

$X_{C}=\frac{1}{\omega C}=\frac{1}{(400 \mathrm{rad} / \mathrm{s})\left(1 \times 10^{-6} \mathrm{~F}\right)}=\frac{10^{6} \Omega}{400}=2500 \Omega$
$I_{m}=\frac{V_{m}}{X_{C}}=\frac{30 \mathrm{~V}}{2500 \Omega}=0.0120 \mathrm{~A}=12 \mathrm{~mA}$
i leads V by $90^{\circ} \quad i=12 \times \mathbf{1 0}^{\mathbf{- 3}} \sin \left(\mathbf{4 0 0} t+\mathbf{9 0}^{\circ}\right)$

EXAMPLE: At what frequency will the reactance of a $200-\mathrm{mH}$ inductor match the resistance level of a $5-\mathrm{k} \Omega$ resistor?

Solutions:

$5000 \Omega=X_{L}=2 \pi f L=2 \pi L f$

$$
=2 \pi\left(200 \times 10^{-3} \mathrm{H}\right) f=1.257 f
$$

$$
f=\frac{5000 \mathrm{~Hz}}{1.257} \cong 3.98 \mathbf{k H z}
$$

