Electrical Engineering Fundamentals

First class

AC

Lecture 8, 9 \& 10

Dr. Saad Mutashar Abbas

2024-2025

PARALLEL ac CIRCUITS

For two impedances in parallel

$$
\mathbf{Z}_{T}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}
$$

EXAMPLE: For the network
a. Find the admittance of each parallel branch.
b. Determine the input admittance.
c. Calculate the input impedance.
d. Draw the admittance diagram.

Solutions:

a. $\mathbf{Y}_{R}=G \angle 0^{\circ}=\frac{1}{R} \angle 0^{\circ}=\frac{1}{20 \Omega} \angle 0^{\circ}$

$$
=0.05 \mathrm{~S} \angle 0^{\circ}=0.05 \mathrm{~S}+j 0
$$

$$
\mathbf{Y}_{L}=B_{L} \angle-90^{\circ}=\frac{1}{X_{L}} \angle-90^{\circ}=\frac{1}{10 \Omega} \angle-90^{\circ}
$$

$$
=0.1 \mathrm{~S} \angle-90^{\circ}=0-j 0.1 \mathrm{~S}
$$

b. $\mathbf{Y}_{T}=\mathbf{Y}_{R}+\mathbf{Y}_{L}=(0.05 \mathrm{~S}+j 0)+(0-j 0.1 \mathrm{~S})$

$$
=0.05 \mathrm{~S}-j 0.1 \mathrm{~S}=G-j B_{L}
$$

c. $\mathbf{Z}_{T}=\frac{1}{\mathbf{Y}_{T}}=\frac{1}{0.05 \mathrm{~S}-j 0.1 \mathrm{~S}}=\frac{1}{0.112 \mathrm{~S} \angle-63.43^{\circ}}$

$$
=8.93 \Omega \angle 63.43^{\circ}
$$

Or

$$
\begin{aligned}
\mathbf{Z}_{T} & =\frac{\mathbf{Z}_{R} \mathbf{Z}_{L}}{\mathbf{Z}_{R}+\mathbf{Z}_{L}}=\frac{\left(20 \Omega \angle 0^{\circ}\right)\left(10 \Omega \angle 90^{\circ}\right)}{20 \Omega+j 10 \Omega} \\
& =\frac{200 \Omega \angle 90^{\circ}}{22.36 \angle 26.57^{\circ}}=\mathbf{8 . 9 3} \mathbf{\Omega} \angle \mathbf{6 3 . 4 3}{ }^{\circ}
\end{aligned}
$$

d.

EXAMPLE: Repeat the above Example for the parallel network.

Solutions:

a. $\mathbf{Y}_{R}=G \angle 0^{\circ}=\frac{1}{R} \angle 0^{\circ}=\frac{1}{5 \Omega} \angle 0^{\circ}$

$$
=0.2 \mathrm{~S} \angle 0^{\circ}=0.2 \mathrm{~S}+j 0
$$

$$
\mathbf{Y}_{L}=B_{L} \angle-90^{\circ}=\frac{1}{X_{L}} \angle-90^{\circ}=\frac{1}{8 \Omega} \angle-90^{\circ}
$$

$$
=0.125 \mathrm{~S} \angle-90^{\circ}=0-j 0.125 \mathrm{~S}
$$

$\mathbf{Y}_{C}=B_{C} \angle 90^{\circ}=\frac{1}{X_{C}} \angle 90^{\circ}=\frac{1}{20 \Omega} \angle 90^{\circ}$
$=0.050 \mathrm{~S} \angle+90^{\circ}=0+j 0.050 \mathrm{~S}$
b. $\mathbf{Y}_{T}=\mathbf{Y}_{R}+\mathbf{Y}_{L}+\mathbf{Y}_{C}$

$$
\begin{aligned}
& =(0.2 \mathrm{~S}+j 0)+(0-j 0.125 \mathrm{~S})+(0+j 0.050 \mathrm{~S}) \\
& =0.2 \mathrm{~S}-j 0.075 \mathrm{~S}=\mathbf{0 . 2 1 3 6} \mathbf{S} \angle-\mathbf{2 0 . 5 6}^{\circ}
\end{aligned}
$$

c. $\mathbf{Z}_{T}=\frac{1}{0.2136 \mathrm{~S} \angle-20.56^{\circ}}=\mathbf{4 . 6 8} \mathbf{\Omega} \angle \mathbf{2 0 . 5 6}{ }^{\circ}$
d.

PARALLEL ac NETWORKS

1) $R-L$

EXAMPLE: find the total impedance and the current in each branch for the network.

Solutions:

$$
\begin{aligned}
\mathbf{Y}_{T} & =\mathbf{Y}_{R}+\mathbf{Y}_{L} \\
& =G \angle 0^{\circ}+B_{L} \angle-90^{\circ}=\frac{1}{3.33 \Omega} \angle 0^{\circ}+\frac{1}{2.5 \Omega} \angle-90^{\circ} \\
& =0.3 \mathrm{~S} \angle 0^{\circ}+0.4 \mathrm{~S} \angle-90^{\circ}=0.3 \mathrm{~S}-j 0.4 \mathrm{~S} \\
& =\mathbf{0 . 5} \mathrm{S} \angle-\mathbf{5 3 . 1 3} 3^{\circ}
\end{aligned}
$$

$$
\mathbf{Z}_{T}=\frac{1}{\mathbf{Y}_{T}}=\frac{1}{0.5 \mathrm{~S} \angle-53.13^{\circ}}=\mathbf{2} \mathbf{\Omega} \angle \mathbf{5 3 . 1 3 ^ { \circ }}
$$

Or

$$
\begin{aligned}
\mathbf{Z}_{T}=\frac{\mathbf{Z}_{R} \mathbf{Z}_{L}}{\mathbf{Z}_{R}+\mathbf{Z}_{L}} & =\frac{\left(3.33 \Omega \angle 0^{\circ}\right)\left(2.5 \Omega \angle 90^{\circ}\right)}{3.33 \Omega \angle 0^{\circ}+2.5 \Omega \angle 90^{\circ}} \\
& =\frac{8.325 \angle 90^{\circ}}{4.164 \angle 36.87^{\circ}}=\mathbf{2} \boldsymbol{\Omega} \angle \mathbf{5 3 . 1 3}{ }^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& B_{L} \angle-90^{\circ}=0.4 \mathrm{~S} \angle-90^{\circ} \\
& \mathbf{I}= \frac{\mathbf{E}}{\mathbf{Z}_{T}}=\mathbf{E} \mathbf{Y}_{T}=\left(20 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.5 \mathrm{~S} \angle-53.13^{\circ}\right)=\mathbf{1 0} \mathbf{A} \angle \mathbf{0}^{\circ} \\
& \mathbf{I}_{R}=\frac{E \angle \theta}{R \angle 0^{\circ}}=(E \angle \theta)\left(G \angle 0^{\circ}\right) \\
&=\left(20 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.3 \mathrm{~S} \angle 0^{\circ}\right)=\mathbf{6} \mathbf{A} \angle \mathbf{5 3 . 1 3} \mathbf{3}^{\circ} \\
& \mathbf{I}_{L}=\frac{E \angle \theta}{X_{L} \angle 90^{\circ}}=(E \angle \theta)\left(B_{L} \angle-90^{\circ}\right) \\
&=\left(20 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.4 \mathrm{~S} \angle-90^{\circ}\right) \\
&=\mathbf{8} \mathbf{A} \angle-\mathbf{3 6 . 8 7}
\end{aligned}
$$

2) $R-C$

EXAMPLE: find the total impedance and the current in each branch for the network.

Solutions:

$$
\begin{aligned}
\mathbf{Y}_{T} & =\mathbf{Y}_{R}+\mathbf{Y}_{C}=G \angle 0^{\circ}+B_{C} \angle 90^{\circ}=\frac{1}{1.67 \Omega} \angle 0^{\circ}+\frac{1}{1.25 \Omega} \angle 90^{\circ} \\
& =0.6 \mathrm{~S} \angle 0^{\circ}+0.8 \mathrm{~S} \angle 90^{\circ}=0.6 \mathrm{~S}+j 0.8 \mathrm{~S}=\mathbf{1 . 0 ~ S} \angle \mathbf{5 3 . 1 3} 3^{\circ}
\end{aligned}
$$

$$
\mathbf{Z}_{T}=\frac{1}{\mathbf{Y}_{T}}=\frac{1}{1.0 \mathrm{~S} \angle 53.13^{\circ}}=\mathbf{1} \boldsymbol{\Omega} \angle-\mathbf{5 3 . 1 3 ^ { \circ }}
$$

Or

$$
\begin{aligned}
\mathbf{Z}_{T}=\frac{\mathbf{Z}_{R} \mathbf{Z}_{C}}{\mathbf{Z}_{R}+\mathbf{Z}_{C}} & =\frac{\left(1.67 \Omega \angle 0^{\circ}\right)\left(1.25 \Omega \angle-90^{\circ}\right)}{1.67 \Omega \angle 0^{\circ}+1.25 \Omega \angle-90^{\circ}} \\
& =\frac{2.09 \angle-90^{\circ}}{2.09 \angle-36.81^{\circ}}=\mathbf{1} \mathbf{\Omega} \angle-\mathbf{5 3 . 1 9}{ }^{\circ} \\
B_{C} \angle 90^{\circ}=0.8 \mathrm{~S} \angle 90^{\circ} & G \angle 0^{\circ}=0.6 \mathrm{~S} \angle 0^{\circ}
\end{aligned}
$$

$$
\mathbf{E}=\mathbf{I Z}_{T}=\frac{\mathbf{I}}{\mathbf{Y}_{T}}=\frac{10 \mathrm{~A} \angle 0^{\circ}}{1 \mathrm{~S} \angle 53.13^{\circ}}=\mathbf{1 0} \mathrm{V} \angle-\mathbf{5 3 . 1 3 ^ { \circ }}
$$

$$
\begin{aligned}
\mathbf{I}_{R} & =(E \angle \theta)\left(G \angle 0^{\circ}\right) \\
& =\left(10 \mathrm{~V} \angle-53.13^{\circ}\right)\left(0.6 \mathrm{~S} \angle 0^{\circ}\right)=\mathbf{6} \mathrm{A} \angle-\mathbf{5 3 . 1 3}{ }^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{I}_{C} & =(E \angle \theta)\left(B_{C} \angle 90^{\circ}\right) \\
& =\left(10 \mathrm{~V} \angle-53.13^{\circ}\right)\left(0.8 \mathrm{~S} \angle 90^{\circ}\right)=\mathbf{8} \mathbf{A} \angle \mathbf{3 6 . 8 7} 7^{\circ}
\end{aligned}
$$

3) $R-L-C$

EXAMPLE: find the total impedance and the current in each branch for the network.

Solutions:

$$
\begin{aligned}
\mathbf{Y}_{T} & =\mathbf{Y}_{R}+\mathbf{Y}_{L}+\mathbf{Y}_{C}=G \angle 0^{\circ}+B_{L} \angle-90^{\circ}+B_{C} \angle 90^{\circ} \\
& =\frac{1}{3.33 \Omega} \angle 0^{\circ}+\frac{1}{1.43 \Omega} \angle-90^{\circ}+\frac{1}{3.33 \Omega} \angle 90^{\circ} \\
& =0.3 \mathrm{~S} \angle 0^{\circ}+0.7 \mathrm{~S} \angle-90^{\circ}+0.3 \mathrm{~S} \angle 90^{\circ} \\
& =0.3 \mathrm{~S}-j 0.7 \mathrm{~S}+j 0.3 \mathrm{~S} \\
& =0.3 \mathrm{~S}-j 0.4 \mathrm{~S}=\mathbf{0 . 5 \mathrm { S } \angle - \mathbf { 5 3 . 1 3 } 3 ^ { \circ }} \\
\mathbf{Z}_{T} & =\frac{1}{\mathbf{Y}_{T}}=\frac{1}{0.5 \mathrm{~S} \angle-53.13^{\circ}}=\mathbf{2} \mathbf{\Omega} \angle \mathbf{5 3 . 1 3} 3^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{I}_{R} & =(E \angle \theta)\left(G \angle 0^{\circ}\right) \\
& =\left(100 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.3 \mathrm{~S} \angle 0^{\circ}\right)=\mathbf{3 0} \mathbf{A} \angle \mathbf{5 3 . 1 3}{ }^{\circ} \\
\mathbf{I}_{L} & =(E \angle \theta)\left(B_{L} \angle-90^{\circ}\right) \\
& =\left(100 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.7 \mathrm{~S} \angle-90^{\circ}\right)=\mathbf{7 0} \mathrm{A} \angle \mathbf{- 3 6 . 8 7} 7^{\circ} \\
\mathbf{I}_{C} & =(E \angle \theta)\left(B_{C} \angle 90^{\circ}\right) \\
& =\left(100 \mathrm{~V} \angle 53.13^{\circ}\right)\left(0.3 \mathrm{~S} \angle+90^{\circ}\right)=\mathbf{3 0} \mathbf{A} \angle \mathbf{1 4 3 . 1 3}^{\circ}
\end{aligned}
$$

EXAMPLE: Using the current divider rule, find the current through each parallel branch.

Solutions:

$$
\begin{aligned}
\mathbf{I}_{R-L} & =\frac{\mathbf{Z}_{C} \mathbf{I}_{T}}{\mathbf{Z}_{C}+\mathbf{Z}_{R-L}}=\frac{\left(2 \Omega \angle-90^{\circ}\right)\left(5 \mathrm{~A} \angle 30^{\circ}\right)}{-j 2 \Omega+1 \Omega+j 8 \Omega}=\frac{10 \mathrm{~A} \angle-60^{\circ}}{1+j 6} \\
& =\frac{10 \mathrm{~A} \angle-60^{\circ}}{6.083 \angle 80.54^{\circ}} \cong \mathbf{1 . 6 4 4} \mathbf{A} \angle-\mathbf{1 4 0 . 5 4} 4^{\circ} \\
\mathbf{I}_{C} & =\frac{\mathbf{Z}_{R-L} \mathbf{I}_{T}}{\mathbf{Z}_{R-L}+\mathbf{Z}_{C}}=\frac{(1 \Omega+j 8 \Omega)\left(5 \mathrm{~A} \angle 30^{\circ}\right)}{6.08 \Omega \angle 80.54^{\circ}} \\
& =\frac{\left(8.06 \angle 82.87^{\circ}\right)\left(5 \mathrm{~A} \angle 30^{\circ}\right)}{6.08 \angle 80.54^{\circ}}=\frac{40.30 \mathrm{~A} \angle 112.87^{\circ}}{6.083 \angle 80.54^{\circ}} \\
& =\mathbf{6 . 6 2 5} \mathrm{A} \angle \mathbf{3 2 . 3 3}{ }^{\circ}
\end{aligned}
$$

Series-Parallel ac Networks

EXAMPLE: For the network
a. Calculate \mathbf{Z}_{T}.
b. Determine \mathbf{I}_{s}.
c. Calculate \mathbf{V}_{R} and \mathbf{V}_{C}.
d. Find \mathbf{I}_{C}.

Solutions:
a)

$\mathbf{Z}_{T}=\mathbf{Z}_{1}+\mathbf{Z}_{2}$
$\mathbf{Z}_{1}=R \angle 0^{\circ}=1 \Omega \angle 0^{\circ}$
$\mathbf{Z}_{2}=\mathbf{Z}_{C} \| \mathbf{Z}_{L}=\frac{\left(X_{C} \angle-90^{\circ}\right)\left(X_{L} \angle 90^{\circ}\right)}{-j X_{C}+j X_{L}}=\frac{\left(2 \Omega \angle-90^{\circ}\right)\left(3 \Omega \angle 90^{\circ}\right)}{-j 2 \Omega+j 3 \Omega}$
$=\frac{6 \Omega \angle 0^{\circ}}{j 1}=\frac{6 \Omega \angle 0^{\circ}}{1 \angle 90^{\circ}}=6 \Omega \angle-90^{\circ}$
$\mathbf{Z}_{T}=\mathbf{Z}_{1}+\mathbf{Z}_{2}=1 \Omega-j 6 \Omega=\mathbf{6 . 0 8} \boldsymbol{\Omega} \angle \mathbf{- 8 0 . 5 4}{ }^{\circ}$
b)
$\mathbf{I}_{s}=\frac{\mathbf{E}}{\mathbf{Z}_{T}}=\frac{120 \mathrm{~V} \angle 0^{\circ}}{6.08 \Omega \angle-80.54^{\circ}}=\mathbf{1 9 . 7 4} \mathrm{A} \angle \mathbf{8 0 . 5 4}{ }^{\circ}$
c)
$\mathbf{V}_{R}=\mathbf{I}_{s} \mathbf{Z}_{1}=\left(19.74 \mathrm{~A} \angle 80.54^{\circ}\right)\left(1 \Omega \angle 0^{\circ}\right)=\mathbf{1 9 . 7 4} \mathrm{V} \angle \mathbf{8 0 . 5 4}{ }^{\circ}$
$\mathbf{V}_{C}=\mathbf{I}_{s} \mathbf{Z}_{2}=\left(19.74 \mathrm{~A} \angle 80.54^{\circ}\right)\left(6 \Omega \angle-90^{\circ}\right)$

$$
=118.44 \mathrm{~V} \angle-9.46^{\circ}
$$

d)

$$
\mathbf{I}_{C}=\frac{\mathbf{V}_{C}}{\mathbf{Z}_{C}}=\frac{118.44 \mathrm{~V} \angle-9.46^{\circ}}{2 \Omega \angle-90^{\circ}}=\mathbf{5 9 . 2 2} \mathrm{A} \angle \mathbf{8 0 . 5 4 ^ { \circ }}
$$

EXAMPLE: For the network
a. If \mathbf{I} is $50 \mathrm{~A} \angle 30^{\circ}$, calculate \mathbf{I}_{1} using the current divider rule.
b. Repeat part (a) for \mathbf{I}_{2}.
c. Verify Kirchhoff's current law at one node.

Solutions:

a)

$$
\begin{aligned}
& \mathbf{Z}_{1}=R+j X_{L}=3 \Omega+j 4 \Omega=5 \Omega \angle 53.13^{\circ} \\
& \mathbf{Z}_{2}=-j X_{C}=-j 8 \Omega=8 \Omega \angle-90^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{I}_{1} & =\frac{\mathbf{Z}_{2} \mathbf{I}}{\mathbf{Z}_{2}+\mathbf{Z}_{1}}=\frac{\left(8 \Omega \angle-90^{\circ}\right)\left(50 \mathrm{~A} \angle 30^{\circ}\right)}{(-j 8 \Omega)+(3 \Omega+j 4 \Omega)}=\frac{400 \angle-60^{\circ}}{3-j 4} \\
& =\frac{400 \angle-60^{\circ}}{5 \angle-53.13^{\circ}}=\mathbf{8 0} \mathrm{A} \angle-6.87^{\circ}
\end{aligned}
$$

b)

$$
\begin{aligned}
\mathbf{I}_{2}=\frac{\mathbf{Z}_{1} \mathbf{I}}{\mathbf{Z}_{2}+\mathbf{Z}_{1}} & =\frac{\left(5 \Omega \angle 53.13^{\circ}\right)\left(50 \mathrm{~A} \angle 30^{\circ}\right)}{5 \Omega \angle-53.13^{\circ}}=\frac{250 \angle 83.13^{\circ}}{5 \angle-53.13^{\circ}} \\
& =\mathbf{5 0} \mathbf{A} \angle \mathbf{1 3 6 . 2 6} 6^{\circ}
\end{aligned}
$$

c)

$$
\begin{aligned}
\mathbf{I} & =\mathbf{I}_{1}+\mathbf{I}_{2} \\
50 \mathrm{~A} \angle 30^{\circ} & =80 \mathrm{~A} \angle-6.87^{\circ}+50 \mathrm{~A} \angle 136.26^{\circ} \\
& =(79.43-j 9.57)+(-36.12+j 34.57) \\
& =43.31+j 25.0 \\
50 \mathrm{~A} \angle 30^{\circ} & =50 \mathrm{~A} \angle 30^{\circ} \quad \text { (checks) }
\end{aligned}
$$

EXAMPLE: For the network

a. Calculate the voltage \mathbf{V}_{C} using the voltage divider rule.
b. Calculate the current \mathbf{I}_{s}.

Solutions:

a)

$\mathbf{V}_{C}=\frac{\mathbf{Z}_{2} \mathbf{E}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}=\frac{\left(12 \Omega \angle-90^{\circ}\right)\left(20 \mathrm{~V} \angle 20^{\circ}\right)}{5 \Omega-j 12 \Omega}=\frac{240 \mathrm{~V} \angle-70^{\circ}}{13 \angle-67.38^{\circ}}$
$=18.46 \mathrm{~V} \angle \mathbf{- 2 . 6 2}{ }^{\circ}$
b)

$$
\begin{aligned}
& \mathbf{I}_{1}=\frac{\mathbf{E}}{\mathbf{Z}_{3}}=\frac{20 \mathrm{~V} \angle 20^{\circ}}{8 \Omega \angle 90^{\circ}}=2.5 \mathrm{~A} \angle-70^{\circ} \\
& \mathbf{I}_{2}=\frac{\mathbf{E}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}=\frac{20 \mathrm{~V} \angle 20^{\circ}}{13 \Omega \angle-67.38^{\circ}}=1.54 \mathrm{~A} \angle 87.38^{\circ}
\end{aligned}
$$

$$
\mathbf{I}_{s}=\mathbf{I}_{1}+\mathbf{I}_{2}
$$

$$
=2.5 \mathrm{~A} \angle-70^{\circ}+1.54 \mathrm{~A} \angle 87.38^{\circ}
$$

$$
=(0.86-j 2.35)+(0.07+j 1.54)
$$

$$
\mathbf{I}_{s}=0.93-j 0.81=\mathbf{1 . 2 3} \mathrm{A} \angle-41.05^{\circ}
$$

Methods of Analysis (ac)

EXAMPLE: Convert the voltage source to a current source.

Solutions:

$$
\begin{aligned}
\mathbf{I} & =\frac{\mathbf{E}}{\mathbf{Z}}=\frac{100 \mathrm{~V} \angle 0^{\circ}}{5 \Omega \angle 53.13^{\circ}} \\
& =\mathbf{2 0} \mathbf{A} \angle \mathbf{- 5 3 . 1 3}{ }^{\circ}
\end{aligned}
$$

EXAMPLE: Convert the current source to a voltage source.

Solutions:

$$
\begin{aligned}
\mathbf{Z}=\frac{\mathbf{Z}_{C} \mathbf{Z}_{L}}{\mathbf{Z}_{C}+\mathbf{Z}_{L}} & =\frac{\left(X_{C} \angle-90^{\circ}\right)\left(X_{L} \angle 90^{\circ}\right)}{-j X_{C}+j X_{L}} \\
& =\frac{\left(4 \Omega \angle-90^{\circ}\right)\left(6 \Omega \angle 90^{\circ}\right)}{-j 4 \Omega+j 6 \Omega}=\frac{24 \Omega \angle 0^{\circ}}{2 \angle 90^{\circ}} \\
& =\mathbf{1 2} \mathbf{\Omega} \angle-\mathbf{9 0 ^ { \circ }} \quad[\text { Fig. } 17.7(\mathrm{~b})] \\
\mathbf{E} & =\mathbf{I Z}=\left(10 \mathrm{~A} \angle 60^{\circ}\right)\left(12 \Omega \angle-90^{\circ}\right) \\
& =\mathbf{1 2 0} \mathbf{V} \angle-\mathbf{3 0}^{\circ} \quad[\text { Fig. 17.7(b) }]
\end{aligned}
$$

EXAMPLE: Using the general approach to mesh analysis, find the current I1.

Solutions:

$$
\begin{array}{ll}
\mathbf{Z}_{1}=+j X_{L}=+j 2 \Omega & \mathbf{E}_{1}=2 \mathrm{~V} \angle 0^{\circ} \\
\mathbf{Z}_{2}=R=4 \Omega & \mathbf{E}_{2}=6 \mathrm{~V} \angle 0^{\circ} \\
\mathbf{Z}_{3}=-j X_{C}=-j 1 \Omega &
\end{array}
$$

$$
\begin{aligned}
& \mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)-\mathbf{I}_{2} \mathbf{Z}_{2}=\mathbf{E}_{1} \\
& \mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)-\mathbf{I}_{1} \mathbf{Z}_{2}=-\mathbf{E}_{2} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)-\mathbf{I}_{2} \mathbf{Z}_{2} & =\mathbf{E}_{1} \\
-\mathbf{I}_{1} \mathbf{Z}_{2} & +\mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)
\end{aligned}=-\mathbf{E}_{2}
$$

$$
\begin{aligned}
\mathbf{I}_{1} & =\frac{\left|\begin{array}{cc}
\mathbf{E}_{1} & -\mathbf{Z}_{2} \\
-\mathbf{E}_{2} & \mathbf{Z}_{2}+\mathbf{Z}_{3}
\end{array}\right|}{\left|\begin{array}{cc}
\mathbf{Z}_{1}+\mathbf{Z}_{2} & -\mathbf{Z}_{2} \\
-\mathbf{Z}_{2} & \mathbf{Z}_{2}+\mathbf{Z}_{3}
\end{array}\right|} \\
& =\frac{\mathbf{E}_{1}\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)-\mathbf{E}_{2}\left(\mathbf{Z}_{2}\right)}{\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)-\left(\mathbf{Z}_{2}\right)^{2}} \\
& =\frac{\left(\mathbf{E}_{1}-\mathbf{E}_{2}\right) \mathbf{Z}_{2}+\mathbf{E}_{1} \mathbf{Z}_{3}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}} \\
\mathbf{I}_{1} & =\frac{(2 \mathrm{~V}-6 \mathrm{~V})(4 \Omega)+(2 \mathrm{~V})(-j 1 \Omega)}{(+j 2 \Omega)(4 \Omega)+(+j 2 \Omega)(-j 2 \Omega)+(4 \Omega)(-j 2 \Omega)} \\
& =\frac{-16-j 2}{j 8-j^{2} 2-j 4}=\frac{-16-j 2}{2+j 4}=\frac{16.12 \mathrm{~A} \angle-172.87^{\circ}}{4.47 \angle 63.43^{\circ}} \\
& =\mathbf{3 . 6 1 \mathbf { A } \angle \mathbf { - 2 3 6 . 3 0 } \quad \text { or } \quad \mathbf { 3 . 6 1 } \mathbf { A } \angle \mathbf { 1 2 3 . 7 0 }}
\end{aligned}
$$

EXAMPLE: Write the mesh currents for the network having a dependent voltage source.

Solutions:

$$
\begin{array}{cc}
\mathbf{E}_{1}-\mathbf{I}_{1} R_{1}-R_{2}\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)=0 & \\
R_{2}\left(\mathbf{I}_{2}-\mathbf{I}_{1}\right)+\mu \mathbf{V}_{x}-\mathbf{I}_{2} R_{3}=0 & \mathbf{V}_{x}=\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right) R_{2} \\
\mathbf{E}_{1}-\mathbf{I}_{1} R_{1}-R_{2}\left(\mathbf{I}-\mathbf{I}_{2}\right)=0 & \\
R_{2}\left(\mathbf{I}_{2}-\mathbf{I}_{1}\right)+\mu R_{2}\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)-\mathbf{I}_{2} R_{3}=0 &
\end{array}
$$

EXAMPLE: Write the nodal equations for the network having a dependent current source.

Solutions:

$\mathbf{V}_{1}\left[\frac{1}{\mathbf{Z}_{1}}+\frac{1}{\mathbf{Z}_{2}}+\frac{1}{\mathbf{Z}_{3}}\right]-\mathbf{V}_{2}\left[\frac{1}{\mathbf{Z}_{3}}\right]=\frac{\mathbf{E}_{1}}{\mathbf{Z}_{1}}$
$\mathbf{V}_{2}\left[\frac{1}{\mathbf{Z}_{3}}+\frac{1}{\mathbf{Z}_{4}}\right]-\mathbf{V}_{1}\left[\frac{1}{\mathbf{Z}_{3}}\right]=-\mathbf{I}$
EXAMPLE: Using superposition, find the current I through the 6- Ω resistor.

Solutions:

$\mathbf{Z}_{1}=j 6 \Omega \quad \mathbf{Z}_{2}=6-j 8 \Omega$

$$
\begin{aligned}
\mathbf{I}^{\prime} & =\frac{\mathbf{Z}_{1} \mathbf{I}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}=\frac{(j 6 \Omega)(2 \mathrm{~A})}{j 6 \Omega+6 \Omega-j 8 \Omega}=\frac{j 12 \mathrm{~A}}{6-j 2} \\
& =\frac{12 \mathrm{~A} \angle 90^{\circ}}{6.32 \angle-18.43^{\circ}}
\end{aligned}
$$

$$
\mathbf{I}^{\prime}=1.9 \mathrm{~A} \angle 108.43^{\circ}
$$

$$
\begin{aligned}
\mathbf{I}^{\prime \prime} & =\frac{\mathbf{E}_{1}}{\mathbf{Z}_{T}}=\frac{\mathbf{E}_{1}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}=\frac{20 \mathrm{~V} \angle 30^{\circ}}{6.32 \Omega \angle-18.43^{\circ}} \\
& =3.16 \mathrm{~A} \angle 48.43^{\circ} \\
\mathbf{I} & =\mathbf{I}^{\prime}+\mathbf{I}^{\prime \prime} \\
& =1.9 \mathrm{~A} \angle 108.43^{\circ}+3.16 \mathrm{~A} \angle 48.43^{\circ} \\
& =(-0.60 \mathrm{~A}+j 1.80 \mathrm{~A})+(2.10 \mathrm{~A}+j 2.36 \mathrm{~A}) \\
& =1.50 \mathrm{~A}+j 4.16 \mathrm{~A} \\
\mathbf{I} & =\mathbf{4 . 4 2} \mathrm{A} \angle \mathbf{7 0 . 2} \mathbf{2}^{\circ}
\end{aligned}
$$

EXAMPLE: Find the Thévenin equivalent circuit for the network external to resistor R.

Solutions:

$\mathbf{Z}_{1}=j X_{L}=j 8 \Omega \quad \mathbf{Z}_{2}=-j X_{C}=-j 2 \Omega$

$\mathbf{E}_{T h}=\frac{\mathbf{Z}_{2} \mathbf{E}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}} \quad$ (voltage divider rule)

$$
=\frac{(-j 2 \Omega)(10 \mathrm{~V})}{j 8 \Omega-j 2 \Omega}=\frac{-j 20 \mathrm{~V}}{j 6}=\mathbf{3 . 3 3} \mathrm{V} \angle-\mathbf{1 8 0 ^ { \circ }}
$$

EXAMPLE: Determine the Norton equivalent circuit for the network external to the $6-\Omega$ resistor.

Solutions:

$\mathbf{Z}_{1}=R_{1}+j X_{L}=3 \Omega+j 4 \Omega=5 \Omega \angle 53.13^{\circ}$
$\mathbf{Z}_{2}=-j X_{C}=-j 5 \Omega$

$\mathbf{Z}_{N}=\frac{\mathbf{Z}_{1} \mathbf{Z}_{2}}{\mathbf{Z}_{1}+\mathbf{Z}_{2}}=\frac{\left(5 \Omega \angle 53.13^{\circ}\right)\left(5 \Omega \angle-90^{\circ}\right)}{3 \Omega+j 4 \Omega-j 5 \Omega}=\frac{25 \Omega \angle-36.87^{\circ}}{3-j 1}$

$$
=\frac{25 \Omega \angle-36.87^{\circ}}{3.16 \angle-18.43^{\circ}}=7.91 \Omega \angle-18.44^{\circ}=7.50 \Omega-j 2.50 \Omega
$$

$$
\mathbf{I}_{N}=\mathbf{I}_{1}=\frac{\mathbf{E}}{\mathbf{Z}_{1}}=\frac{20 \mathrm{~V} \angle 0^{\circ}}{5 \Omega \angle 53.13^{\circ}}=\mathbf{4 A} \angle-53.13^{\circ}
$$

