Electrical Engineering Fundamentals

First class

AC

Dr. Saad Mutashar Abbas

2024-2025

COMPLEX NUMBERS

A complex number represents a point in a two-dimensional plane located with reference to two distinct axes. This point can also determine a radius vector drawn from the origin to the point. The horizontal axis is called the real axis, while the vertical axis is called the imaginary axis. Two forms are used to represent a complex number: rectangular and polar.

1) RECTANGULAR FORM

The format for the rectangular form is

$$
\mathbf{C}=X+j Y
$$

EXAMPLE: Sketch the following complex numbers in the complex plane:
a) $\mathbf{C}=3+j 4$
b) $\mathbf{C}=0-j 6$
c) $\mathbf{C}=-10-j 20$

Solutions:

a)

b)

c)

2) POLAR FORM

The format for the polar form is

$$
\mathbf{C}=Z \angle \theta
$$

EXAMPLE: Sketch the following complex numbers in the complex plane:
a) $\mathbf{C}=5 \angle 30^{\circ}$
b) $\mathbf{C}=7 \angle-120^{\circ}$
c) $\mathbf{C}=-4.2 \angle 60^{\circ}$

Solutions:

a)

b)

c)

$$
\begin{aligned}
\mathbf{C}=-4.2 \angle 60^{\circ} & =4.2 \angle 60^{\circ}+180^{\circ} \\
& =4.2 \angle+240^{\circ}
\end{aligned}
$$

CONVERSION BETWEEN FORMS

1) Rectangular to Polar

$$
Z=\sqrt{X^{2}+Y^{2}}
$$

$$
\theta=\tan ^{-1} \frac{Y}{X}
$$

2) Polar to Rectangular

$$
X=Z \cos \theta
$$

$$
Y=Z \sin \theta
$$

EXAMPLE: Convert the following from rectangular to polar form:

$$
\mathbf{C}=3+j 4
$$

Solutions:

$$
\begin{gathered}
Z=\sqrt{(3)^{2}+(4)^{2}}=\sqrt{25}=5 \\
\theta=\tan ^{-1}\left(\frac{4}{3}\right)=53.13^{\circ} \\
\mathbf{C}=\mathbf{5} \angle \mathbf{5 3 . 1 3 ^ { \circ }}
\end{gathered}
$$

EXAMPLE: Convert the following from polar to rectangular form:

$$
\mathbf{C}=10 \angle 45^{\circ}
$$

Solutions:

$X=10 \cos 45^{\circ}=(10)(0.707)=7.07$
$Y=10 \sin 45^{\circ}=(10)(0.707)=7.07$

$$
\mathrm{C}=7.07+j 7.07
$$

Problem 5

Convert the following from polar to rectangular form $C=10 \angle 30$

MATHEMATICAL OPERATIONS WITH COMPLEX NUMBERS

Complex numbers lend themselves readily to the basic mathematical operations of addition, subtraction, multiplication, and division. A few basic rules and definitions must be understood before considering these operations.

$$
j=\sqrt{-1}
$$

$$
j^{2}=-1
$$

1) Addition

$$
\begin{aligned}
& \mathbf{C}_{1}= \pm X_{1} \pm j Y_{1} \quad \text { and } \quad \mathbf{C}_{2}= \pm X_{2} \pm j Y_{2} \\
& \mathbf{C}_{1}+\mathbf{C}_{2}=\left(\pm X_{1} \pm X_{2}\right)+j\left(\pm Y_{1} \pm Y_{2}\right)
\end{aligned}
$$

EXAMPLE:

a. $\operatorname{Add} \mathbf{C}_{1}=2+j 4$ and $\mathbf{C}_{2}=3+j 1$.
b. Add $\mathbf{C}_{1}=3+j 6$ and $\mathbf{C}_{2}=-6+j 3$.

Solutions:

a)
$\mathbf{C}_{1}+\mathbf{C}_{2}=(2+3)+j(4+1)=\mathbf{5}+\boldsymbol{j} \mathbf{5}$
b)
$\mathbf{C}_{1}+\mathbf{C}_{2}=(3-6)+j(6+3)=-\mathbf{3}+\boldsymbol{j} 9$
2) Subtraction

$$
\mathbf{C}_{1}= \pm X_{1} \pm j Y_{1} \quad \text { and } \quad \mathbf{C}_{2}= \pm X_{2} \pm j Y_{2}
$$

$$
\mathbf{C}_{1}-\mathbf{C}_{2}=\left[\pm X_{2}-\left(\pm X_{2}\right)\right]+j\left[\pm Y_{1}-\left(\pm Y_{2}\right)\right]
$$

EXAMPLE:

a. Subtract $\mathbf{C}_{2}=1+j 4$ from $\mathbf{C}_{1}=4+j 6$.
b. Subtract $\mathbf{C}_{2}=-2+j 5$ from $\mathbf{C}_{1}=+3+j 3$.

Solutions:

a)
$\mathbf{C}_{1}-\mathbf{C}_{2}=(4-1)+j(6-4)=\mathbf{3}+\boldsymbol{j} \mathbf{2}$
b)
$\mathbf{C}_{1}-\mathbf{C}_{2}=[3-(-2)]+j(3-5)=\mathbf{5}-\boldsymbol{j} \mathbf{2}$

Problem 6

Given $A=2+j 1$ and $B=1+j 3$. Determine their sum and difference analytically
3) Multiplication

$$
\mathbf{C}_{1}=X_{1}+j Y_{1} \quad \text { and } \quad \mathbf{C}_{2}=X_{2}+j Y_{2}
$$

$$
\mathbf{C}_{1} \cdot \mathbf{C}_{2}=\left(X_{1} X_{2}-Y_{1} Y_{2}\right)+j\left(Y_{1} X_{2}+X_{1} Y_{2}\right)
$$

$$
\begin{gathered}
\mathbf{C}_{1}=Z_{1} \angle \theta_{1} \quad \text { and } \quad \mathbf{C}_{2}=Z_{2} \angle \theta_{2} \\
\mathbf{C}_{1} \cdot \mathbf{C}_{2}=Z_{1} Z_{2} \angle \theta_{1}+\theta_{2} \\
\hline
\end{gathered}
$$

EXAMPLE:

a. Find $\mathbf{C}_{1} \cdot \mathbf{C}_{2}$ if

$$
\mathbf{C}_{1}=5 \angle 20^{\circ} \text { and } \mathbf{C}_{2}=10 \angle 30^{\circ}
$$

b. Find $\mathbf{C}_{1} \cdot \mathbf{C}_{2}$ if

$$
\mathbf{C}_{1}=2 \angle-40^{\circ} \text { and } \mathbf{C}_{2}=7 \angle+120^{\circ}
$$

Solutions:

a. $\mathbf{C}_{1} \cdot \mathbf{C}_{2}=\left(5 \angle 20^{\circ}\right)\left(10 \angle 30^{\circ}\right)=(5)(10) / 20^{\circ}+30^{\circ}=\mathbf{5 0} \angle \mathbf{5 0}{ }^{\circ}$
b. $\mathbf{C}_{1} \cdot \mathbf{C}_{2}=\left(2 \angle-40^{\circ}\right)\left(7 \angle+120^{\circ}\right)=(2)(7) /-40^{\circ}+120^{\circ}$

$$
=14 \angle+80^{\circ}
$$

4) Division

$$
\begin{gathered}
\mathbf{C}_{1}=Z_{1} \angle \theta_{1} \quad \text { and } \quad \mathbf{C}_{2}=Z_{2} \angle \theta_{2} \\
\frac{\mathbf{C}_{1}}{\mathbf{C}_{2}}=\frac{Z_{1}}{Z_{2}} \not \theta_{1}-\theta_{2}
\end{gathered}
$$

EXAMPLE:

a. Find $\mathbf{C}_{1} / \mathbf{C}_{2}$ if $\mathbf{C}_{1}=15 \angle 10^{\circ}$ and $\mathbf{C}_{2}=2 \angle 7^{\circ}$.
b. Find $\mathbf{C}_{1} / \mathbf{C}_{2}$ if $\mathbf{C}_{1}=8 \angle 120^{\circ}$ and $\mathbf{C}_{2}=16 \angle-50^{\circ}$.

Solutions:

a. $\frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}=\frac{15 \angle 10^{\circ}}{2 \angle 7^{\circ}}=\frac{15}{2} \angle 10^{\circ}-7^{\circ}=7.5 \angle 3^{\circ}$
b. $\frac{\mathbf{C}_{1}}{\mathbf{C}_{2}}=\frac{8 \angle 120^{\circ}}{16 \angle-50^{\circ}}=\frac{8}{16} \angle 120^{\circ}-\left(-50^{\circ}\right)=\mathbf{0 . 5} \angle \mathbf{1 7 0 ^ { \circ }}$

$$
\frac{1}{Z \angle \theta}=\frac{1}{Z} \angle-\theta
$$

Problem 7

Given $A=3 \angle 35^{\circ}$ and $B=2 \angle-20^{\circ}$, determine $A \cdot B$ and A / B

