From AISC B4.1(b) and the discussion in Part 1 of the Manual, the unreduced length of the 8 -inch side between the corner radii can be taken as

$$
b=8-3 t=8-3(0.116)=7.652 \mathrm{in} .
$$

where the corner radius is taken as 1.5 times the design thickness.
The total loss in area is therefore

$$
2\left(b-b_{e}\right) t=2(7.652-4.784)(0.116)=0.6654 \mathrm{in.}^{2}
$$

and the reduced area is

$$
A_{e}=2.70-0.6654=2.035 \mathrm{in}^{2}
$$

The reduction factor is

$$
\begin{aligned}
Q_{a} & =\frac{A_{e}}{A_{g}}=\frac{2.035}{2.70}=0.7537 \\
Q & =Q_{s} Q_{a}=1.0(0.7537)=0.7537
\end{aligned}
$$

Compute the local buckling strength:

$$
\begin{aligned}
& 4.71 \sqrt{\frac{E}{Q F_{y}}}=4.71 \sqrt{\frac{29,000}{0.7537(46)}}=136.2 \\
& \frac{K L}{r}=105.3<136.2 \quad \therefore \text { Use AISC Equation E7-2 } \\
& F_{c r}=Q\left(0.658^{\frac{Q F_{y}}{F_{e}}}\right) F_{y}=0.7537\left(0.658^{\frac{0.7537(46)}{25.81}}\right) 46=19.76 \mathrm{ksi} \\
& P_{n}=F_{c r} A_{g}=19.76(2.70)=53.35 \mathrm{kips}
\end{aligned}
$$

Since this is less than the flexural buckling strength of 58.91 kips , local buckling controls.

LR F D Design strength $=\phi_{c} P_{n}=0.90(53.35)=48.0 \mathrm{kips}$

SOLUTION

Allowable strength $=\frac{P_{n}}{\Omega}=\frac{53.35}{1.67}=32.0 \mathrm{kips}$
(Allowable stress $\left.=0.6 F_{c r}=0.6(19.76)=11.9 \mathrm{ksi}\right)$

ALTERNATIVE SOLUTION WITH f DETERMINED BY ITERATION

As an initial trial value, use

$$
\begin{aligned}
& f=F_{c r}=19.76 \mathrm{ksi} \text { (the value obtained above after using an initial value of } \\
& \left.f=F_{y}\right)
\end{aligned}
$$

$$
b_{e}=1.92(0.116) \sqrt{\frac{29,000}{19.76}}\left[1-\frac{0.38}{(66.0)} \sqrt{\frac{29,000}{19.76}}\right]=6.65 \mathrm{in} .
$$

The total loss in area is

$$
2\left(b-b_{e}\right) t=2(7.652-6.65)(0.116)=0.2325 \text { in. }{ }^{2}
$$

and the reduced area is

$$
A_{e}=2.70-0.2325=2.468 \mathrm{in.}^{2}
$$

The reduction factor is

$$
\begin{aligned}
Q_{a} & =\frac{A_{e}}{A_{g}}=\frac{2.468}{2.70}=0.9141 \\
Q & =Q_{s} Q_{a}=1.0(0.9141)=0.9141
\end{aligned}
$$

Compute the local buckling strength.

$$
\begin{aligned}
& 4.71 \sqrt{\frac{E}{Q F_{y}}}=4.71 \sqrt{\frac{29,000}{0.9141(46)}}=123.7 \\
& \frac{K L}{r}=105.3<123.7 \quad \therefore \text { Use AISC Equation E7-2 } \\
& F_{c r}=Q\left(0.658^{\frac{Q F_{y}}{F_{e}}}\right)_{y_{y}} \\
& \quad=0.9141\left(0.658^{\frac{0.9141(46)}{25.81}}\right) 46=21.26 \mathrm{ksi} \quad 19.76 \text { ksi (the assumed value) }
\end{aligned}
$$

Try $f=21.26 \mathrm{ksi}:$

$$
b_{e}=1.92(0.116) \sqrt{\frac{29,000}{21.26}}\left[1-\frac{0.38}{(66.0)} \sqrt{\frac{29,000}{21.26}}\right]=6.477 \mathrm{in} .
$$

The total loss in area is

$$
2\left(b-b_{e}\right) t=2(7.652-6.477)(0.116)=0.2726 \text { in. }{ }^{2}
$$

and the reduced area is

$$
A_{e}=2.70-0.2726=2.427 \mathrm{in.}^{2}
$$

