Enter the tables with $K L=10.34$ feet. A W8 $\times 58$ has an interpolated strength of

$$
\begin{equation*}
\frac{P_{n}}{\Omega_{c}}=397 \mathrm{kips}<400 \mathrm{kips} \tag{N.G.}
\end{equation*}
$$

The next lightest W8 that will work is a $\mathrm{W} 8 \times 67$.

$$
\frac{K_{x} L}{r_{x} / r_{y}}=\frac{18}{1.75}=10.29 \mathrm{ft}>9 \mathrm{ft}
$$

The interpolated allowable strength is

$$
\frac{P_{n}}{\Omega_{c}}=460 \mathrm{kips}>400 \mathrm{kips} \quad(\mathrm{OK})
$$

Next, investigate the W10 shapes. Try a W 10×60.

$$
\frac{K_{x} L}{r_{x} / r_{y}}=\frac{18}{1.71}=10.53 \mathrm{ft}>9 \mathrm{ft}
$$

The interpolated strength is

$$
\frac{P_{n}}{\Omega_{c}}=444 \mathrm{kips}>400 \mathrm{kips} \quad(\mathrm{OK})
$$

Check the W12 shapes. Try a W $12 \times 53\left(P_{n} / \Omega_{c}=407 \mathrm{kips}\right.$ for $\left.K L=9 \mathrm{ft}\right)$:

$$
\frac{K_{x} L}{r_{x} / r_{y}}=\frac{18}{2.11}=8.53 \mathrm{ft}<9 \mathrm{ft}
$$

$\therefore K_{y} L$ controls for this shape, and $P_{n} / \Omega_{c}=407$ kips.
Find the lightest W14. The lightest one with a possibility of working is a W14 $\times 61$. Since it is heavier than the lightest one found so far, it will not be considered.

ANSWER Use a W 12×53.

Whenever possible, the designer should provide extra support for the weak direction of a column. Otherwise, the member is inefficient: It has an excess of strength in one direction. When $K_{x} L$ and $K_{y} L$ are different, $K_{y} L$ will control unless r_{x} / r_{y} is smaller than $K_{x} L / K_{y} L$. When the two ratios are equal, the column has equal strength in both directions. For most of the W -shapes in the column load tables, r_{x} / r_{y} ranges between 1.6 and 1.8 , but it is as high as 3.1 for some shapes.

EXAMPLE 4.11

The column shown in Figure 4.13 is subjected to a service dead load of 140 kips and a service live load of 420 kips. Use A992 steel and select a W-shape.

S OLUTION $K_{x} L=20 \mathrm{ft}$ and maximum $K_{y} L=8 \mathrm{ft}$. The effective length $K_{x} L$ will control whenever

$$
\frac{K_{x} L}{r_{x} / r_{y}}>K_{y} L
$$

or

$$
r_{x} / r_{y}<\frac{K_{x} L}{K_{y} L}
$$

In this example,

$$
\frac{K_{x} L}{K_{y} L}=\frac{20}{8}=2.5
$$

so $K_{x} L$ will control if $r_{x} / r_{y}<2.5$. Since this is true for almost every shape in the column load tables, $K_{x} L$ probably controls in this example.

Assume $r_{x} / r_{y}=1.7$:

$$
\frac{K_{x} L}{r_{x} / r_{y}}=\frac{20}{1.7}=11.76>K_{y} L
$$

FIGURE 4.13

Support in strong direction

Support in weak direction

