AISC Specification Section E7.1 gives the procedure for calculating Q_{s} for slender unstiffened elements. The procedure is straightforward, and involves comparing the width-to-thickness ratio with a limiting value and then computing Q_{s} from an expression that is a function of the width-to-thickness ratio, F_{y}, and E.

The computation of Q_{a} for slender stiffened elements is given in AISC E7.2 and is slightly more complicated than the procedure for unstiffened elements. The general procedure is as follows.

- Compute an effective area of the cross section. This requires a knowledge of the stress in the effective area, so iteration is required. The Specification allows a simplifying assumption, however, so iteration can be avoided.
- Compute $Q_{a}=A_{e} / A_{g}$, where A_{e} is the effective area, and A_{g} is the gross or unreduced area.

The details of the computation of Q_{s} and Q_{a} will not be given here but will be shown in the following example, which illustrates the procedure for an HSS.

EXAMPLE 4.4

Determine the axial compressive strength of an HSS $8 \times 4 \times 1 / 8$ with an effective length of 15 feet with respect to each principal axis. Use $F_{y}=46 \mathrm{ksi}$.

SOLUTION Compute the overall, or flexural, buckling strength.

$$
\begin{aligned}
& \text { Maximum } \frac{K L}{r}=\frac{K L}{r_{y}}=\frac{15 \times 12}{1.71}=105.3<200 \\
& 4.71 \sqrt{\frac{E}{F_{y}}}=4.71 \sqrt{\frac{29,000}{46}}=118
\end{aligned}
$$

Since $105.3<118$, use AISC Equation E3-2.

$$
\begin{aligned}
& F_{e}=\frac{\pi^{2} E}{(K L / r)^{2}}=\frac{\pi^{2}(29,000)}{(105.3)^{2}}=25.81 \mathrm{ksi} \\
& F_{c r}=0.658^{\left(F_{y} / F_{e}\right)} F_{y}=0.658^{(46 / 25.81)}(46)=21.82 \mathrm{ksi}
\end{aligned}
$$

The nominal strength is

$$
P_{n}=F_{c r} A_{g}=21.82(2.70)=58.91 \mathrm{kips}
$$

Check width-to-thickness ratios:

From the dimensions and properties table in the Manual, the width-to-thickness ratio for the larger overall dimension is

$$
\frac{h}{t}=66.0
$$

The ratio for the smaller dimension is

$$
\frac{b}{t}=31.5
$$

From AISC Table B4.1a, Case 6 (and Figure 4.9 in this book), the upper limit for nonslender elements is

$$
1.40 \sqrt{\frac{E}{F_{y}}}=1.40 \sqrt{\frac{29,000}{46}}=35.15
$$

Since $h / t>1.40 \sqrt{E / F_{y}}$, the larger dimension element is slender and the local buckling strength must be computed. (Although the limiting width-to-thickness ratio is labeled b / t in the table, that is a generic notation, and it applies to h / t as well.)

Because this cross-sectional element is a stiffened element, $Q_{s}=1.0$, and Q_{a} must be computed from AISC Section E7.2. The shape is a rectangular section of uniform thickness, with

$$
\frac{b}{t} \geq 1.40 \sqrt{\frac{E}{f}}
$$

So AISC E7.2 (b) applies, where

$$
f=\frac{P_{n}}{A_{e}}
$$

and A_{e} is the reduced effective area. The Specification user note for square and rectangular sections permits a value of $f=F_{y}$ to be used in lieu of determining f by iteration. From AISC Equation E7-18, the effective width of the slender element is

$$
b_{e}=1.92 t \sqrt{\frac{E}{f}}\left[1-\frac{0.38}{b / t} \sqrt{\frac{E}{f}}\right] \leq b
$$

(AISC Equation E7-18)

For the 8 -inch side, using $f=F_{y}$ and the design thickness* from the dimensions and properties table,

$$
b_{e}=1.92(0.116) \sqrt{\frac{29,000}{46}}\left[1-\frac{0.38}{(66.0)} \sqrt{\frac{29,000}{46}}\right]=4.784 \mathrm{in} .
$$

[^0]
[^0]: *The design thickness of an HSS is 0.93 times the nominal thickness (AISC B4.2). Using the design thickness in strength computations is a conservative way to account for tolerances in the manufacturing process.

