FIGURE 3.19

EXAMPLE 3.9

Find the available strength of the S-shape shown in Figure 3.20. The holes are for $3 / 4$-inch-diameter bolts. Use A36 steel.

SOLUTION Compute the net area:

$$
A_{n}=A_{g}-\sum t \times\left(d \text { or } d^{\prime}\right)
$$

Effective hole diameter $=\frac{3}{4}+\frac{1}{8}=\frac{7}{8}$
For line $a d$,

$$
A_{n}=14.7-4\left(\frac{7}{8}\right)(0.622)=12.52 \mathrm{in.}^{2}
$$

For line $a b c d$, the gage distance for use in the $s^{2} / 4 g$ term is

$$
\frac{g}{2}+g_{1}-\frac{t_{w}}{2}=\frac{3.5}{2}+2.75-\frac{0.550}{2}=4.225 \mathrm{in} .
$$

FIGURE 3.20

Starting at a and treating the holes at b and d as the staggered holes gives

$$
\begin{aligned}
A_{n}= & A_{g}-\sum t \times\left(d \text { or } d^{\prime}\right) \\
= & 14.7-2(0.622)\left(\frac{7}{8}\right)-(0.550)\left[\frac{7}{8}-\frac{(1.5)^{2}}{4(4.225)}\right] \\
& -(0.550)\left(\frac{7}{8}\right)-2(0.622)\left[\frac{7}{8}-\frac{(1.5)^{2}}{4(4.225)}\right]=11.73 \mathrm{in.}^{2}
\end{aligned}
$$

Line $a b c d$ controls. As all elements of the cross section are connected,

$$
A_{e}=A_{n}=11.73 \mathrm{in.}^{2}
$$

For the net section, the nominal strength is

$$
P_{n}=F_{u} A_{e}=58(11.73)=680.3 \mathrm{kips}
$$

For the gross section,

$$
P_{n}=F_{y} A_{g}=36(14.7)=529.2 \mathrm{kips}
$$

LRFD
 The design strength based on fracture is

SOLUTION

$$
\phi_{t} P_{n}=0.75(680.3)=510 \mathrm{kips}
$$

The design strength based on yielding is

$$
\phi_{t} P_{n}=0.90(529.2)=476 \mathrm{kips}
$$

Yielding of the gross section controls.
A N S WER Design strength $=476 \mathrm{kips}$.
ASD The allowable stress based on fracture is

$$
F_{t}=0.5 F_{u}=0.5(58)=29.0 \mathrm{ksi}
$$

and the corresponding allowable strength is $F_{t} A_{e}=29.0(11.73)=340$ kips. The allowable stress based on yielding is

$$
F_{t}=0.6 F_{y}=0.6(36)=21.6 \mathrm{ksi}
$$

and the corresponding allowable strength is $F_{t} A_{g}=21.6(14.7)=318 \mathrm{kips}$. Yielding of the gross section controls.

A N S W ER Allowable strength $=318$ kips.

3.5 BLOCK SHEAR

For certain connection configurations, a segment or "block" of material at the end of the member can tear out. For example, the connection of the single-angle tension member shown in Figure 3.21 is susceptible to this phenomenon, called block shear.

