The available strengths given in the column load tables are based on the effective length with respect to the y-axis. A procedure for using the tables with $K_{x} L$, however, can be developed by examining how the tabular values were obtained. Starting with a value of $K L$, the strength was obtained by a procedure similar to the following:

- $K L$ was divided by r_{y} to obtain $K L / r_{y}$.
- $F_{c r}$ was computed.
- The available strengths, $\phi_{c} P_{n}$ for LRFD and P_{n} / Ω_{c} for ASD, were computed.

Thus the tabulated strengths are based on the values of $K L$ being equal to $K_{y} L$. If the capacity with respect to x-axis buckling is desired, the table can be entered with

$$
K L=\frac{K_{x} L}{r_{x} / r_{y}}
$$

and the tabulated load will be based on

$$
\frac{K L}{r_{y}}=\frac{K_{x} L /\left(r_{x} / r_{y}\right)}{r_{y}}=\frac{K_{x} L}{r_{x}}
$$

The ratio r_{x} / r_{y} is given in the column load tables for each shape listed.

EXAMPLE 4.10

The compression member shown in Figure 4.12 is pinned at both ends and supported in the weak direction at midheight. A service load of 400 kips , with equal parts of dead and live load, must be supported. Use $F_{y}=50 \mathrm{ksi}$ and select the lightest W-shape.

FIGURE 4.12

LRFD
 SOLUTION

Assume that the weak direction controls and enter the column load tables with $K L=9$ feet. Beginning with the smallest shapes, the first one found that will work is a W8 $\times 58$ with a design strength of 634 kips.

Check the strong axis:

$$
\begin{aligned}
& \frac{K_{x} L}{r_{x} / r_{y}}=\frac{18}{1.74}=10.34 \mathrm{ft}>9 \mathrm{ft} \\
& \therefore K_{x} L \text { controls for this shape. }
\end{aligned}
$$

Enter the tables with $K L=10.34$ feet. A W 8×58 has an interpolated strength of

$$
\phi_{c} P_{n}=596 \mathrm{kips}>560 \mathrm{kips} \quad(\mathrm{OK})
$$

Next, investigate the W10 shapes. Try a W 10×49 with a design strength of 568 kips .
Check the strong axis:

$$
\begin{aligned}
& \frac{K_{x} L}{r_{x} / r_{y}}=\frac{18}{1.71}=10.53 \mathrm{ft}>9 \mathrm{ft} \\
& \therefore K_{x} L \text { controls for this shape. }
\end{aligned}
$$

Enter the tables with $K L=10.53$ feet. A W10 $\times 54$ is the lightest W 10 , with an interpolated design strength of 594 kips.

Continue the search and investigate a W12 $\times 53\left(\phi_{c} P_{n}=611 \mathrm{kips}\right.$ for $\left.K L=9 \mathrm{ft}\right)$:

$$
\frac{K_{x} L}{r_{x} / r_{y}}=\frac{18}{2.11}=8.53 \mathrm{ft}<9 \mathrm{ft}
$$

$\therefore K_{y} L$ controls for this shape, and $\phi_{c} P_{n}=611$ kips.
Determine the lightest W14. The lightest one with a possibility of working is a $\mathrm{W} 14 \times 61$. It is heavier than the lightest one found so far, so it will not be considered.

ANSWER Use a W 12×53.
ASD The required load capacity is $P=400 \mathrm{kips}$. Assume that the weak direction controls and enter the column load tables with $K L=9$ feet. Beginning with the smallest shapes, the first one found that will work is a W8 $\times 58$ with an allowable strength of 422 kips .
Check the strong axis:

$$
\frac{K_{x} L}{r_{x} / r_{y}}=\frac{18}{1.74}=10.34 \mathrm{ft}>9 \mathrm{ft}
$$

$\therefore K_{x} L$ controls for this shape.

