The available strengths given in the column load tables are based on the effective length with respect to the y-axis. A procedure for using the tables with $K_x L$, however, can be developed by examining how the tabular values were obtained. Starting with a value of *KL*, the strength was obtained by a procedure similar to the following:

- *KL* was divided by r_y to obtain KL/r_y .
- F_{cr} was computed.
- The available strengths, $\phi_c P_n$ for LRFD and P_n/Ω_c for ASD, were computed.

Thus the tabulated strengths are based on the values of *KL* being equal to K_yL . If the capacity with respect to *x*-axis buckling is desired, the table can be entered with

$$KL = \frac{K_x L}{r_x / r_y}$$

and the tabulated load will be based on

$$\frac{KL}{r_y} = \frac{K_x L/(r_x/r_y)}{r_y} = \frac{K_x L}{r_x}$$

The ratio r_x/r_y is given in the column load tables for each shape listed.

EXAMPLE 4.10

The compression member shown in Figure 4.12 is pinned at both ends and supported in the weak direction at midheight. A service load of 400 kips, with equal parts of dead and live load, must be supported. Use $F_y = 50$ ksi and select the lightest W-shape.

FIGURE 4.12

LRFD SOLUTION Factored load = $P_u = 1.2(200) + 1.6(200) = 560$ kips Assume that the weak direction controls and enter the column load tables with

Assume that the weak direction controls and enter the column load tables with KL = 9 feet. Beginning with the smallest shapes, the first one found that will work is a W8 × 58 with a design strength of 634 kips.

Check the strong axis:

 $\frac{K_x L}{r_x/r_y} = \frac{18}{1.74} = 10.34 \text{ ft} > 9 \text{ ft}$ ∴ $K_x L$ controls for this shape.

Enter the tables with KL = 10.34 feet. A W8 × 58 has an interpolated strength of

 $\phi_c P_n = 596 \text{ kips} > 560 \text{ kips}$ (OK)

Next, investigate the W10 shapes. Try a W10 × 49 with a design strength of 568 kips.

Check the strong axis:

$$\frac{K_x L}{r_x/r_y} = \frac{18}{1.71} = 10.53 \text{ ft} > 9 \text{ ft}$$

 $\therefore K_x L$ controls for this shape.

Enter the tables with KL = 10.53 feet. A W10 × 54 is the lightest W10, with an interpolated design strength of 594 kips.

Continue the search and investigate a W12 × 53 ($\phi_c P_n = 611$ kips for KL = 9 ft):

 $\frac{K_x L}{r_x/r_y} = \frac{18}{2.11} = 8.53 \text{ ft} < 9 \text{ ft}$ $\therefore K_y L \text{ controls for this shape, and } \phi_c P_n = 611 \text{ kips.}$

Determine the lightest W14. The lightest one with a possibility of working is a $W14 \times 61$. It is heavier than the lightest one found so far, so it will not be considered.

ANSWER Use a $W12 \times 53$.

ASD SOLUTION The required load capacity is P = 400 kips. Assume that the weak direction controls and enter the column load tables with KL = 9 feet. Beginning with the smallest shapes, the first one found that will work is a W8 × 58 with an allowable strength of 422 kips.

Check the strong axis:

$$\frac{K_x L}{r_x / r_y} = \frac{18}{1.74} = 10.34 \text{ ft} > 9 \text{ ft}$$

 $\therefore K_{x}L$ controls for this shape.