Pin-connected members should be designed for the following limit states (see Figure 3.38).

1. Tension on the net effective area (Figure 3.38a):

$$
\phi_{t}=0.75, \Omega_{t}=2.00, \quad P_{n}=F_{u}\left(2 t b_{e}\right)
$$

(AISC Equation D5-1)
2. Shear on the effective area (Figure 3.38b):

$$
\phi_{s f}=0.75, \Omega_{s f}=2.00, \quad P_{n}=0.6 F_{u} A_{s f}
$$

(AISC Equation D5-2)
3. Bearing. This requirement is given in Chapter \mathbf{J} ("Connections, Joints, and Fasteners"), Section J7 (Figure 3.38c):

$$
\phi=0.75, \Omega=2.00, \quad P_{n}=1.8 F_{y} A_{p b}
$$

(AISC Equation J7-1)
4. Tension on the gross section:

$$
\phi_{t}=0.90, \Omega_{t}=1.67, \quad P_{n}=F_{y} A_{g}
$$

(AISC Equation D2-1)
where

$$
\begin{array}{ll}
t= & \text { thickness of connected part } \\
b_{e}= & 2 t+0.63 \leq b \\
b= & \text { distance from edge of pin hole to edge of member, perpendicular to } \\
& \text { direction of force } \\
A_{s f}= & 2 t(a+d / 2) \\
a= & \text { distance from edge of pin hole to edge of member, parallel to direction } \\
& \text { of force } \\
d= & \text { pin diameter } \\
A_{p b}= & \text { projected bearing area }=d t
\end{array}
$$

Additional requirements for the relative proportions of the pin and the member are covered in AISC D5.2

FIGURE 3.38

(a) Fracture of net section

(b) Longitudinal shear

Section
(c) Bearing

Problems

Tensile Strength

3.2-1 A PL $3 / 8 \times 7$ tension member is connected with three 1 -inch-diameter bolts, as shown in Figure P3.2-1. The steel is A36. Assume that $A_{e}=A_{n}$ and compute the following.
a. The design strength for LRFD.
b. The allowable strength for ASD.

FIGURE P3.2-1
3.2-2 A PL $1 / 2 \times 8$ tension member is connected with six 1-inch-diameter bolts, as shown in Figure P3.2-2. The steel is ASTM A242. Assume that $A_{e}=A_{n}$ and compute the following.
a. The design strength for LRFD.
b. The allowable strength for ASD.

FIGURE P3.2-2
3.2-3 A C12 $\times 30$ is connected with 1-in. diameter bolts in each flange, as shown in Figure P3.2-3. If $F_{y}=50 \mathrm{ksi}, F_{u}=65 \mathrm{ksi}$, and $A_{e}=0.90 A_{n}$, compute the following.
a. The design strength for LRFD.
b. The allowable strength for ASD.

