AI- Mustaqbal University
 College of Sciences
 Department of Cybersecurity

AL MUSTAQBAL UNIVERSITY

كلية العلوم
قسم الأمن السيبراني
Lecture: (3)

Sets of numbers, Finite sets and counting principle Subject: Discrete Structures

First Stage: Semester II
Lecturer: BAQER KAREEM SALIM

AI- Mustaqbal University

Set of numbers:

Several sets are used so often, they are given special symbols.
$\mathrm{N}=$ the set of natural numbers or positive integers

$$
\mathbb{N}=\{0,1,2,3, \ldots\}
$$

$\mathrm{Z}=$ the set of all integers: $\ldots,-2,-1,0,1,2, \ldots$

$$
\mathbb{Z}=\mathbb{N} \cup\{\ldots,-2,-1\}
$$

$\mathrm{Q}=$ the set of rational numbers

$$
\mathbb{Q}=\mathbb{Z} \cup\{\ldots,-1 / 3,-1 / 2,1 / 2,1 / 3, \ldots, 2 / 3,2 / 5, \ldots\}
$$

Where $Q=\{a / b: a, b \in Z, b \neq 0\}$
$\mathrm{R}=$ the set of real numbers

$$
\mathbb{R}=\mathbb{Q} \cup\{\ldots,-\pi,-\sqrt{2}, \sqrt{2}, \pi, \ldots\}
$$

$\mathrm{C}=$ the set of complex numbers

$$
\begin{aligned}
\mathrm{C} & =\mathbb{R} \cup\{i, 1+i, 1-i, \sqrt{2}+\pi i, \ldots\} \\
\text { Where } \quad \mathrm{C} & =\{\mathrm{x}+\mathrm{iy} ; \mathrm{x}, \mathrm{y} \in \mathrm{R} ; \mathrm{i}=\sqrt{ }-1\}
\end{aligned}
$$

Observe that $\mathrm{N} \subset \mathrm{Z} \subset \mathrm{Q} \subset \mathrm{R} \subset \mathrm{C}$.

AI- Mustaqbal University

Finite Sets and Counting Principle:

A set is said to be finite if it contains exactly m distinct elements, where m denotes some nonnegative integer. Otherwise, a set is said to be infinite.

For example:

- The empty set \varnothing and the set of letters of English alphabet are finite sets,
- The set of even positive integers, $\{2,4,6, \ldots .$.$\} , is infinite.$
- If a set A is finite, we let $\mathrm{n}(\mathrm{A})$ or \#(A) denote the number of elements of A.

Example:

If $A=\{1,2, a, w\}$ then

$$
n(\mathrm{~A})=\#(\mathrm{~A})=|\mathrm{A}|=4
$$

Lemma: If A and B are finite sets and disjoint Then $A \cup B$ is finite set and:

$$
n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})
$$

Theorem (Inclusion-Exclusion Principle): Suppose A and B are finite sets. Then
$A \cup B$ and $A \cap B$ are finite and

$$
|\mathrm{A} \cup \mathrm{~B}|=|\mathrm{A}|+|\mathrm{B}|-|\mathrm{A} \cap \mathrm{~B}|
$$

That is, we find the number of elements in A or B (or both) by first adding $\mathrm{n}(\mathrm{A})$ and $\mathrm{n}(\mathrm{B})$ (inclusion) and then subtracting $n(A \cap B)$ (exclusion) since its elements were counted twice.
We can apply this result to obtain a similar formula for three sets:

AI- Mustaqbal University

Corollary:

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are finite sets then
$|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$
Example (1) :
A $=\{1,2,3\}$
$\mathrm{B}=\{3,4\}$
$\mathrm{C}=\{5,6\}$
$A \cup B \cup C=\{1,2,3,4,5,6\}$
$|A \cup B \cup C|=6$
$|A|=3 \quad,|B|=2,|C|=2$
$A \cap B=\{3\} \quad, \quad|A \cap B|=1$
$A \cap C=\{ \} \quad,|A \cap C|=0$
$\mathrm{B} \cap \mathrm{C}=\{ \} \quad,|\mathrm{B} \cap \mathrm{C}|=0$
$A \cap B \cap C=\{ \} \quad,|A \cap B \cap C|=0$
$|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=|\mathrm{A}|+|\mathrm{B}|+|\mathrm{C}|-|\mathrm{A} \cap \mathrm{B}|-|\mathrm{A} \cap \mathrm{C}|-|\mathrm{B} \cap \mathrm{C}|+|\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}|$ $|\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}|=3+2+2-1-0-0+0=6$
Example (2):
Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 35 students in an English class, and suppose there are 20 names on both lists. Find the number of students:
(a) only on list A
(b) only on list B
(c) on list $A \cup B$

AI- Mustaqbal University

Solution:

(a) List A has 30 names and 20 are on list B; hence $30-20=10$ names are only on list A.
(b) Similarly, 35-20 = 15 are only on list B.
(c) We seek $n(A \cup B)$. By inclusion-exclusion,

$$
\begin{aligned}
n(A \cup B) & =n(A)+n(B)-n(A \cap B) \\
& =30+35-20=45 .
\end{aligned}
$$

Example (3):
Suppose that 100 of 120 computer science students at a college take at least one of languages: French, German, and Russian:
65 study French (F).
45 study German (G).
42 study Russian (R).
20 study French \& German $\mathrm{F} \cap \mathrm{G}$.
25 study French \& Russian $\mathrm{F} \cap \mathrm{R}$.
15 study German \& Russian $G \cap$ R.
Find the number of students who study:

1) All three languages ($F \cap G \cap R$)
2) The number of students in each of the eight regions of the Venn diagram

AI- Mustaqbal University

Solution:
$\quad|F \cup G \cup R|=|F|+|G|+|R|-|F \cap G|-|F \cap R|-|G \cap R|+|F \cap G \cap R|$
$100 \quad=65+45+42-\quad 20-25-15+|F \cap G \cap R|$
$100 \quad=92 \quad+|F \cap G \cap R|$
$\therefore|F \cap G \cap R|=8$ students study the 3 languages
$20-8=12 \quad(F \cap G)-R$
$25-8=17 \quad(F \cap R)-G$
$15-8=7 \quad(G \cap R)-F$
$65-12-8-17=28$ students study French only
$45-12-87=18 \quad$ students study German only
$42-17-87=10 \quad$ students study Russian only
$120-100=20 \quad$ students do not study any language

AI- Mustaqbal University
 College of Sciences
 Department of Cybersecurity

