

College of Sciences Department of Cybersecurity

جامــــعـة المــــسـتـقـبـل AL MUSTAQBAL UNIVERSITY

كلية العلوم قسم الأمن السيبراني

Lecture: (2)

Algebra of sets and it's proving, Power set, Classes of sets, Cardinality.

Subject: Discrete Structures First Stage: Semester II Lecturer: BAQER KAREEM SALIM

College of Sciences Department of Cybersecurity

(Algebra of sets)

Sets under the above operations satisfy various laws or identities which are listed below:

Dage 2	Study Year: 2023-2024
9- U ^c = \varnothing	
$A \cap A^c = \emptyset$	
8- A \cup A ^c = U	Complement intersections and unions
7- (A ^c) ^c = A	Double complements
$6-A \cup U = U$ $A \cap \emptyset = \emptyset$	Identity laws
$5-A \cup \emptyset = A$ $A \cap U = A$	Identity laws
$4-A \cup (B \cap C) = (A \cup B) \cap (A \cap B) \cup (A \cap B) $	$\begin{array}{ll} A \cup C) & \text{Distributive laws} \\ A \cap C) \end{array}$
$3- A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutativity
$2-(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$	Associative laws
$1 - A \cup A = A$ $A \cap A = A$	

College of Sciences Department of Cybersecurity

$$\emptyset^{c} = U$$

10-
$$(A \cup B)^{c} = A^{c} \cap B^{c}$$

 $(A \cap B)^{c} = A^{c} \cup B^{c}$

De Morgan's laws

Power set

The power set of some set S, denoted P(S), is the set of all subsets of S (including S itself and the empty set)

 $P(S) = \{e : e \subseteq S\}$

Example 1:

Let $A = \{ 1, 23 \}$

Power set of set A = P(A)

 $=\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{\},A]$

Example 2:

 $P(\{0,1\}) = \{\{\},\{0\},\{1\},\{0,1\}\}\$

Classes of sets:

Collection of subset of a set with some properties

Example:

Suppose $A = \{ 1, 23 \}$,

Page | 3

College of Sciences Department of Cybersecurity

let X2 be the class of subsets of A which contain exactly two elements of A. Then

class $X0 = [\{\}]$ class $X1 = [\{1\}, \{2\}, \{3\}]$ class $X2 = [\{1,2\}, \{1,3\}, \{2,3\}]$ class $X3 = [\{1,2,3\}]$

Cardinality

The cardinality of a set S, denoted |S|, is simply the number of elements a set has, so

|{a,b,c,d**}|** = 4,

The cardinality of the power set

Theorem: If |A| = n then $|P(A)| = 2^n$ (Every set with n elements has 2^n subsets)

College of Sciences Department of Cybersecurity

Problem set

Write the answers to the following questions.

- 1. |{1,2,3,4,5,6,7,8,9,0}|
- 2. $|P(\{1,2,3\})|$
- 3. $P(\{0,1,2\})$
- 4. $P(\{1\})$

Answers

- 1. 10
- 2. $2^3 = 8$
- 3. $\{\{\},\{0\},\{1\},\{2\},\{0,1\},0,2\},\{1,2\},\{0,1,2\}\}$

The Cartesian product

The Cartesian Product of two sets is the set of all tuples made from elements of two sets.

We write the Cartesian Product of two sets A and B as $A \times B$. It is defined as:

$$A \times B = \{(a, b) | a \in A \text{ and } b \in B\}$$

It may be clearer to understand from examples;

Page | 5

College of Sciences Department of Cybersecurity

$$\begin{array}{l} \{0,1\}\times\{2,3\}=\{(0,2),(0,3),(1,2),(1,3)\}\\ \{a,b\}\times\{c,d\}=\{(a,c),(a,d),(b,c),(b,d)\}\\ \{0,1,2\}\times\{4,6\}=\{(0,4),(0,6),(1,4),(1,6),(2,4),(2,6)\} \end{array}$$

Example:

If $A = \{1, 2, 3\}$ and $B = \{x, y\}$ then

A . B = {(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)} B . A = {(x, 1), (x, 2), (x, 3), (y, 1), (y, 2), (y, 3)}

It is clear that, the cardinality of the Cartesian product of two sets A and B is:

 $|A \times B| = |A||B|$

A Cartesian Product of two sets A and B can be produced by making tuples of each element of A with each element of B; this can be visualized as a grid (which *Cartesian* implies) or table: if, *e.g.*,

 $A = \{ 0, 1 \}$ and $B = \{ 2, 3 \}$, the grid is

×		Α	
		0	1
B	2	(0,2)	(1,2)
	3	(0,3)	(1,3)

Page | 6

College of Sciences Department of Cybersecurity

Problem set

Answer the following questions:

1. $\{2,3,4\} \times \{1,3,4\}$ 2. $\{0,1\} \times \{0,1\}$ 3. $|\{1,2,3\} \times \{0\}|$ 4. $|\{1,1\} \times \{2,3,4\}|$

Answers

```
1. {(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)}
2. {(0,0),(0,1),(1,0),(1,1)}
3. 3
4. 6
```

EXAMPLE

What is the Cartesian product $A \times B \times C$, where $A = \{0, 1\},\$ $B = \{1, 2\},\$ and $C = \{0, 1, 2\}$? *Solution:* The Cartesian product $A \times B \times C$ consists of all ordered triples (*a*, *b*, *c*), where $a \in A, b \in B$, and $c \in C$. Hence,

 $A \times B \times C = \{(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}.$

Page | 7

College of Sciences Department of Cybersecurity

EXAMPLE

Suppose that $A = \{1, 2\}$. It follows that $A^2 = \{(1, 1), (1, 2), (2, 1), (2, 2)\}$ and $A^3 = \{(1,1,1), (1,1,2), (1,2,1), (1,2, 2), (2,1,1), (2,1,2), (2, 2, 1), (2, 2, 2)\}.$