AI- Mustaqbal University
 College of Sciences
 Department of Cybersecurity

 AL MUSTAQBAL UNIVERSITY

كلية العلوم
قسم الأمن السيبراني

Lecture: (2)

Algebra of sets and it's proving, Power set, Classes of sets, Cardinality.

Subject: Discrete Structures

First Stage: Semester II
Lecturer: BAQER KAREEM SALIM

AI- Mustaqbal University

(Algebra of sets)

Sets under the above operations satisfy various laws or identities which are listed below:

$$
\begin{array}{r}
1-\mathrm{A} \cup \mathrm{~A}=\mathrm{A} \\
\mathrm{~A} \cap \mathrm{~A}=\mathrm{A}
\end{array}
$$

2- $(A \cup B) \cup C=A \cup(B \cup C)$
$(A \cap B) \cap C=A \cap(B \cap C)$
$3-\mathrm{A} \cup \mathrm{B}=\mathrm{B} \cup \mathrm{A}$
$\mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
4- $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

5- $\mathrm{A} \cup \varnothing=\mathrm{A}$
$A \cap U=A$
6- $A \cup U=U$
$A \cap \varnothing=\varnothing$

7- $\left(\mathrm{A}^{\mathrm{c}}\right)^{\mathrm{c}}=\mathrm{A}$
$8-A \cup A^{c}=U$
$A \cap A^{c}=\varnothing$
$9-U^{c}=\varnothing$

Complement intersections and unions

Identity laws

Double complements

AI- Mustaqbal University

$$
\varnothing^{c}=U
$$

10- $(\mathrm{A} \cup \mathrm{B})^{\mathrm{c}}=\mathrm{A}^{\mathrm{c}} \cap \mathrm{B}^{\mathrm{c}}$
De Morgan's laws
$(A \cap B)^{c}=A^{c} \cup B^{c}$

Power set

The power set of some set S, denoted $P(S)$, is the set of all subsets of S (including S itself and the empty set)

$$
P(S)=\{e: e \subseteq S\}
$$

Example 1:
Let $A=\{1,23\}$
Power set of set $A=P(A)$

$$
=\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{ \}, A]
$$

Example 2:

$$
P(\{0,1\})=\{\{ \},\{0\},\{1\},\{0,1\}\}
$$

Classes of sets:

Collection of subset of a set with some properties
Example:
Suppose $A=\{1,23\}$,

AI- Mustaqbal University

let X2 be the class of subsets of A which contain exactly two elements of A . Then

$$
\begin{aligned}
& \text { class X0 }=[\{ \}] \\
& \text { class X1 }=[\{1\},\{2\},\{3\}] \\
& \text { class X2 }=[\{1,2\},\{1,3\},\{2,3\}] \\
& \text { class X3 }=[\{1,2,3\}]
\end{aligned}
$$

Cardinality

The cardinality of a set S, denoted $|\mathbf{S}|$, is simply the number of elements a set has, so

$$
|\{a, b, c, d\}|=4
$$

The cardinality of the power set

Theorem:
If $|\mathrm{A}|=\mathrm{n}$ then $|\mathrm{P}(\mathrm{A})|=2^{\mathrm{n}}$
(Every set with n elements has 2^{n} subsets)

Al- Mustaqbal University

Problem set

Write the answers to the following questions.

1. $|\{1,2,3,4,5,6,7,8,9,0\}|$
2. $|\mathrm{P}(\{1,2,3\})|$
3. $\mathrm{P}(\{0,1,2\})$
4. $\mathrm{P}(\{1\})$

Answers

1. 10
2. $2^{3}=8$
3. $\{\},\{0\},\{1\},\{2\},\{0,1\}, 0,2\},\{1,2\},\{0,1,2\}\}$

The Cartesian product

The Cartesian Product of two sets is the set of all tuples made from elements of two sets.

We write the Cartesian Product of two sets A and B as $\mathrm{A} \times \mathrm{B}$. It is defined as:

$$
A \times B=\{(a, b) \mid a \in A \text { and } b \in B\}
$$

It may be clearer to understand from examples;

AI- Mustaqbal University

$$
\begin{aligned}
\{0,1\} \times\{2,3\} & =\{(0,2),(0,3),(1,2),(1,3)\} \\
\{a, b\} \times\{c, d\} & =\{(a, c),(a, d),(b, c),(b, d)\} \\
\{0,1,2\} \times\{4,6\} & =\{(0,4),(0,6),(1,4),(1,6),(2,4),(2,6)\}
\end{aligned}
$$

Example:

If $A=\{1,2,3\}$ and $B=\{x, y\}$ then
A. $B=\{(1, x),(1, y),(2, x),(2, y),(3, x),(3, y)\}$
$B . A=\{(x, 1),(x, 2),(x, 3),(y, 1),(y, 2),(y, 3)\}$
It is clear that, the cardinality of the Cartesian product of two sets A and B is:

$$
|A \times B|=|A||B|
$$

A Cartesian Product of two sets A and B can be produced by making tuples of each element of A with each element of B; this can be visualized as a grid (which Cartesian implies) or table: if, e.g.,
$A=\{0,1\}$ and $B=\{2,3\}$, the grid is

\times		A	
		0	1
B	2	$(0,2)$	$(1,2)$
	3	$(0,3)$	$(1,3)$

AI- Mustaqbal University

Problem set

Answer the following questions:

1. $\{2,3,4\} \times\{1,3,4\}$
2. $\{0,1\} \times\{0,1\}$
3. $|\{1,2,3\} \times\{0\}|$
4. $|\{1,1\} \times\{2,3,4\}|$

Answers

1. $\{(2,1),(2,3),(2,4),(3,1),(3,3),(3,4),(4,1),(4,3),(4,4)\}$
2. $\{(0,0),(0,1),(1,0),(1,1)\}$
3. 3
4. 6

EXAMPLE

What is the Cartesian product $A \times B \times C$, where
$A=\{0,1\}$,
$B=\{1,2\}$, and
$C=\{0,1,2\}$?

Solution:

The Cartesian product $A \times B \times C$ consists of all ordered triples (a, $b, c)$, where $a \in A, b \in B$, and $c \in C$. Hence,

$$
\begin{aligned}
A \times B \times C= & \{(0,1,0),(0,1,1),(0,1,2),(0,2,0),(0,2,1),(0,2,2),(1,1,0), \\
& (1,1,1),(1,1,2),(1,2,0),(1,2,1),(1,2,2)\} .
\end{aligned}
$$

AI- Mustaqbal University
 College of Sciences
 Department of Cybersecurity

EXAMPLE

Suppose that $A=\{1,2\}$. It follows that
$A^{2}=\{(1,1),(1,2),(2,1),(2,2)\}$ and
$A^{3}=\{(1,1,1),(1,1,2),(1,2,1),(1,2,2),(2,1,1),(2,1,2),(2,2,1),(2,2,2)\}$.

