of 5.413 in. ${ }^{2}$ should be multiplied by $10 / 9$ to obtain a net area that can be compared with those lines that resist the full load. Use $A_{n}=5.413\left({ }^{10} / 9\right)=6.014$ in. ${ }^{2}$ For line abcdeg,

$$
\begin{aligned}
g_{c d} & =3+2.25-0.5=4.75 \mathrm{in} . \\
A_{n} & =6.80-0.5(1.0)-0.5\left[1.0-\frac{(1.5)^{2}}{4(2.5)}\right]-0.5\left[1.0-\frac{(1.5)^{2}}{4(4.75)}\right]-0.5\left[1.0-\frac{(1.5)^{2}}{4(3)}\right] \\
& =5.065 \mathrm{in.}^{2}
\end{aligned}
$$

The last case controls; use

$$
A_{n}=5.065 \text { in. }^{2}
$$

Both legs of the angle are connected, so

$$
A_{e}=A_{n}=5.065 \mathrm{in.}^{2}
$$

The nominal strength based on fracture is

$$
P_{n}=F_{u} A_{e}=58(5.065)=293.8 \mathrm{kips}
$$

The nominal strength based on yielding is

$$
P_{n}=F_{y} A_{g}=36(6.80)=244.8 \mathrm{kips}
$$

a. The design strength based on fracture is

$$
\phi_{t} P_{n}=0.75(293.8)=220 \mathrm{kips}
$$

The design strength based on yielding is

$$
\phi_{t} P_{n}=0.90(244.8)=220 \mathrm{kips}
$$

A NSWER Design strength $=220$ kips.
b. For the limit state of fracture, the allowable stress is

$$
F_{t}=0.5 F_{u}=0.5(58)=29.0 \mathrm{ksi}
$$

and the allowable strength is

$$
F_{t} A_{e}=29.0(5.065)=147 \mathrm{kips}
$$

For yielding,

$$
\begin{aligned}
& F_{t}=0.6 F_{y}=0.6(36)=21.6 \mathrm{ksi} \\
& F_{t} A_{g}=21.6(6.80)=147 \mathrm{kips}
\end{aligned}
$$

A N S W ER Allowable strength $=147$ kips.

EXAMPLE 3.8

Determine the smallest net area for the American Standard Channel shown in Figure 3.18 . The holes are for $5 / 8$-inch-diameter bolts.

SOLUTION

$$
\begin{aligned}
A_{n} & =A_{g}-\sum t_{w} \times\left(d \text { or } d^{\prime}\right) \\
d & =\text { bolt diameter }+\frac{1}{8}=\frac{5}{8}+\frac{1}{8}=\frac{3}{4} \mathrm{in} .
\end{aligned}
$$

Line abe:

$$
A_{n}=A_{g}-t_{w} d=3.82-0.437\left(\frac{3}{4}\right)=3.49 \mathrm{in.}^{2}
$$

Line $a b c d$:

$$
\begin{aligned}
A_{n} & =A_{g}-t_{w}(d \text { for hole at } b)-t_{w}\left(d^{\prime} \text { for hole at } c\right) \\
& =3.82-0.437\left(\frac{3}{4}\right)-0.437\left[\frac{3}{4}-\frac{(2)^{2}}{4(3)}\right]=3.31 \mathrm{in.}^{2}
\end{aligned}
$$

A NSWER Smallest net area $=3.31 \mathrm{in} .^{2}$

FIGURE 3.18

When staggered holes are present in shapes other than angles, and the holes are in different elements of the cross section, the shape can still be visualized as a plate, even if it is an I-shape. The AISC Specification furnishes no guidance for gage lines crossing a "fold" when the different elements have different thicknesses. A method for handling this case is illustrated in Figure 3.19. In Example 3.8, all of the holes are in one element of the cross section, so this difficulty does not arise. Example 3.9 illustrates the case of staggered holes in different elements of an S-shape.

