
Pressure Distribution 

The pressure distribution in a channel section depends upon the flow 

conditions. Let us consider several possible cases, starting with the 

simplest one and then proceeding progressively to more complex 

situations.  

Static Conditions  

Let us consider a column of liquid having cross-sectional area ΔA, as 

shown in Fig. 1-13. The horizontal and vertical components of the 

resultant force acting on the liquid column are zero, since the liquid is 

stationary. If p = pressure intensity at the bottom of the liquid column, 

then the force due to pressure at the bottom of the column acting 

vertically upwards = pΔA. The weight of the liquid column acting 

vertically downwards = ρgyΔA. Since the vertical component of the 

resultant force is zero, we can write  

pΔA = ρgyΔA 

or  

p = ρgy     (1 − 15) 

In other words, the pressure intensity is directly proportional to the depth 

below the free surface. Since ρ is constant for typical engineering 

applications, the relationship between the pressure intensity and depth 

plots as a straight line, and the liquid rises to the level of the free surface 

in a piezometer, as shown in Fig. 1-13. The linear relationship, based on 

the assumption that ρ is constant, is usually valid except at very large 

depths, where large pressures result in increased density.  

 

 



Horizontal, Parallel Flow  

Let us now consider the forces acting on a vertical column of liquid 

flowing in a horizontal, frictionless channel (Fig. 1-14).  

 

Let us assume that there is no acceleration in the direction of flow and the 

flow velocity is parallel to the channel bottom and is uniform over the 

channel section. Thus the streamlines are parallel to the channel bottom. 

Since there is no acceleration in the direction of flow, the component of 

the resultant force in this direction is zero. Referring to the free-body 

diagram shown in Fig. 1-14 and noting that the vertical component of the 

resultant force acting on the column of liquid is zero, we may write  

ρgyΔA = pΔA 

or  

p = ρgy = γy    (1 − 16) 

in which γ = ρg = specific weight of the liquid. Note that this pressure 

distribution is the same as if the liquid were stationary; it is, therefore, 

referred to as the hydrostatic pressure distribution. 



 

Parallel Flow in Sloping Channels  

Let us now consider the flow conditions in a sloping channel such that 

there is no acceleration in the flow direction, the flow velocity is uniform 

at a channel cross section and is parallel to the channel bottom; i.e., the 

streamlines are parallel to the channel bottom. Figure 1-15 shows the 

free-body diagram of a column of liquid normal to the channel bottom. 

The cross-sectional area of the column is ΔA. If θ = slope of the channel 

bottom, then the component of the weight of column acting along the 

column is ρgdΔA cos θ and the force acting at the bottom of the column 

is pΔA. There is no acceleration in a direction along the column length, 

since the flow velocity is parallel to the channel bottom. Hence, we can 

write pΔA = ρgdΔA cos θ, or p = ρgd cos θ = γd cos θ. By substituting d 

= y cos θ into this equation (y = flow depth measured vertically, as shown 

in Fig. 1-15), we obtain  

p = γy cos
2
 θ    (1 − 17) 

Note that in this case the pressure distribution is not hydrostatic in spite 

of 



 

the fact that we have parallel flow and there is no acceleration in the 

direction of flow. However, if the slope of the channel bottom is small, 

then cos θ � 1 and d � y. Hence,  

p � ρgd � ρgy    (1 − 18)  

In several derivations in the subsequent chapters we assume that the slope 

of the channel bottom is small. With this assumption, the pressure 

distribution may be assumed to be hydrostatic if the streamlines are 

almost parallel and straight, and the flow depths measured vertically or 

normal to the channel bottom are approximately the same.  

Curvilinear Flow 

 In the previous three cases, the streamlines were straight and parallel to 

the channel bottom. However, in several real-life situations, the 

streamlines have pronounced curvature. To determine the pressure 

distribution in such flows, let us consider the forces acting in the vertical 

direction on a column of liquid with cross-sectional area ΔA, as shown in 

Fig. 1-16.  



 

1-7 Reynolds Transport Theorem  

The Reynolds transport theorem relates the flow variables for a specified 

fluid mass to that of a specified flow region. We will utilize it in later 

chapters to derive the governing equations for steady and unsteady flow 

conditions. To simplify the presentation of its application, we include a 

brief description in this section; for details, see Roberson and Crowe 

[1997].  

We will call a specified fluid mass the system and a specified region, the 

control volume. The boundaries of a system separate it from its 

surroundings and the boundaries of a control volume are referred to as the 

control surface. The three well-known conservation laws of mass, 

momentum, and energy de�scribe the interaction between a system and 

its surroundings. However, in hydraulic engineering, we are usually 

interested in the flow in a region as compared to following the motion of 

a fluid particle or the motion of a quantity of mass. The Reynolds 

transport theorem relates the flow variables in a control volume to those 

of a system.  

Let the extensive property of a system be B and the corresponding 

intensive property be β. The intensive property is defined as the amount 

of B per unit mass, m, of a system, i.e.,  

β = lim Δm→0 ΔB Δm     (1 − 24)  



Thus, the total amount of B in a control volume  

Bcv =  cv βρdV    (1 − 25)  

in which ρ = mass density and dV = differential volume of the fluid, and 

the integration is over the control volume. We will consider mainly one-

dimensional flows in this book. The control volume will be fixed in space 

and will not change its shape with respect to time, i.e., it will not stretch 

or contract. For such a control volume for one�dimensional flow, the 

following equation relates the system properties to those in the control 

volume:  

dBsys /dt = d dt � cv βρdV + (βρAV )out − (βρAV )in   (1 − 26)  

in which the subscripts in and out refer to the quantities for the inflow and 

outflow from the control volume and V = flow velocity. The system is 

assumed to occupy the entire control volume, i.e., the system boundaries 

coincide with the control surface.  

Let us now discuss the application of this equation to a control volume. 

As an example, the time rate of change of momentum of a system is equal 

to the sum of the forces exerted on the system by its surroundings 

(New�ton’s second law of motion).To use this equation to describe the 

conservation of momentum of the water of mass m in a control volume, 

the extensive property B is the momentum of water = mV and the 

corresponding intensive property, β = limΔm→0 V (Δm/Δm) = V . To 

describe the conservation of mass, B is the mass of water and the 

corresponding intensive property β = limΔm→0(Δm/Δm)=1. 


