SOLUTION Calculate loads:

$$
\begin{array}{lll}
\begin{array}{l}
\text { Snow }=20(40)(20)=16,000 \mathrm{lb} \\
\text { Dead load }(\text { exclusive of purlins })=
\end{array} & \text { Deck } & 2 \mathrm{psf} \\
& \text { Roof } & 4 \\
& \text { Insulation } & \underline{3} \\
& \text { Total } & \underline{9 \mathrm{psf}}
\end{array}
$$

Total dead load $=9(40)(20)=7200 \mathrm{lb}$
Total purlin weight $=6.5(20)(9)=1170 \mathrm{lb}$
Estimate the truss weight as 10% of the other loads:

$$
0.10(16,000+7200+1170)=2437 \mathrm{lb}
$$

Loads at an interior joint are

$$
\begin{aligned}
D & =\frac{7200}{8}+\frac{2437}{8}+6.5(20)=1335 \mathrm{lb} \\
S & =\frac{16,000}{8}=2000 \mathrm{lb}
\end{aligned}
$$

At an exterior joint, the tributary roof area is half of that at an interior joint. The corresponding loads are

$$
\begin{aligned}
D & =\frac{7200}{2(8)}+\frac{2437}{2(8)}+6.5(20)=732.3 \mathrm{lb} \\
S & =\frac{16,000}{2(8)}=1000 \mathrm{lb}
\end{aligned}
$$

LRFD Load combination 3 will control:

$$
P_{u}=1.2 D+1.6 S
$$

At an interior joint,

$$
P_{u}=1.2(1.335)+1.6(2.0)=4.802 \mathrm{kips}
$$

At an exterior joint,

$$
P_{u}=1.2(0.7323)+1.6(1.0)=2.479 \mathrm{kips}
$$

The loaded truss is shown in Figure 3.35a.
The bottom chord is designed by determining the force in each member of the bottom chord and selecting a cross section to resist the largest force. In this example, the force in member $I J$ will control. For the free body left of section $a-a$ shown in Figure 3.35b,

$$
\begin{aligned}
\sum M_{E} & =19.29(20)-2.479(20)-4.802(15+10+5)-4 F_{I J}=0 \\
F_{I J} & =48.04 \mathrm{kips}
\end{aligned}
$$

For the gross section,

$$
\text { Required } A_{g}=\frac{F_{I J}}{0.90 F_{y}}=\frac{48.04}{0.90(50)}=1.07 \mathrm{in} .^{2}
$$

For the net section,

$$
\text { Required } A_{e}=\frac{F_{I J}}{0.75 F_{u}}=\frac{48.04}{0.75(65)}=0.985 \mathrm{in} .^{2}
$$

Try an MT5 $\times 3.75$:

$$
A_{g}=1.11 \mathrm{in} .^{2}>1.07 \mathrm{in} .^{2} \quad(\mathrm{OK})
$$

Compute the shear lag factor U from Equation 3.1.

$$
\begin{aligned}
& U=1-\left(\frac{\bar{x}}{\ell}\right)=1-\left(\frac{1.51}{9}\right)=0.8322 \\
& A_{e}=A_{g} U=1.11(0.8322)=0.924 \mathrm{in.}^{2}<0.985 \mathrm{in.}^{2}
\end{aligned}
$$

Try an MT6 $\times 5$:

$$
\begin{aligned}
A_{g} & =1.48 \mathrm{in} .^{2}>1.07 \mathrm{in.}^{2} \\
U & =1-\left(\frac{\mathrm{OK})}{\ell}\right)=1-\left(\frac{1.86}{9}\right)=0.7933 \\
A_{e} & =A_{g} U=1.48(0.7933)=1.17 \mathrm{in.}^{2}>0.985 \mathrm{in} .^{2}
\end{aligned}
$$

